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Abstract—There have been few researches on solving multi-
modal multi-objective optimization problems, whereas they are
commonly seen in real-world applications but difficult for the
existing evolutionary optimizers. In this study, we propose a novel
multi-modal multi-objective evolutionary algorithm using two-
archive and recombination strategies. In the proposed algorithm,
the properties of decision variables and the relationships among
them are analyzed at first to guide the evolutionary search. Then,
a general framework using two archives, i.e., the convergence
and the diversity archives, is adopted to cooperatively solve
these problems. Moreover, the diversity archive simultaneously
employs a clustering strategy to guarantee diversity in the
objective space and a niche-based clearing strategy to promote
the same in the decision space. At the end of evolution process,
the solutions in the convergence and the diversity archives are
recombined to obtain a large number of multiple Pareto optimal
solutions. In addition, a set of benchmark test functions and a
performance metric are designed for multi-modal multi-objective
optimization. The proposed algorithm is empirically compared
with two state-of-the-art evolutionary algorithms on these test
functions. The comparative results demonstrate that the overall
performance of the proposed algorithm is significantly superior
to the competing algorithms.

I. BENCHMARK TEST FUNCTIONS: MMMOP1-6

This is the Supplementary Material of A Multi-Modal
Multi-Objective Evolutionary Algorithm Using Two-Archive
and Recombination Strategies. Tables I and II give the com-
mon properties and the detailed definitions of benchmark test
functions proposed in this paper, i.e., MMMOP1-6. Figs. 1-7
shows the Pareto optimal fronts and Pareto optimal solution
sets of these problems. Please refer to Subsection IV.A in the
main body of the paper for the detailed descriptions of them.
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TABLE I
COMMON PROPERTIES OF MMMOP1-6.

 

Developed from
Type of 

Decision Variable

Geometry

of PF

MMMOP1 Equal Maxima, DLTZ1 Convergence, Diversity Linear

MMMOP2 Vincent, DLTZ4 Convergence, Diversity Concave

MMMOP3 Rastrigin, DLTZ2 Convergence, Diversity Concave

MMMOP4 Rastrigin, DLTZ3 Convergence, Diversity Concave

MMMOP5 Rastrigin, DLTZ3 Convergence, Diversity Concave

MMMOP6 Himmelblau, UF8 Convergence, Mixed Concave

II. ACHIEVED SOLUTION SETS BY DIFFERENT
ALGORITHMS IN THE DECISION SPACE

We present the achieved solution sets of some represen-
tative instances in the decision space by TriMOEA-TA&R,
MO Ring PSO SCD [1], and DN-NSGA-II [2] in a given
single run to visually investigate their performance in Figs.
8-13. This particular run is associated with the result which
is the closest to the mean IGDM value in Table III in the
main body of the paper. Readers can compare these achieved
solution sets with the PSs in Figs. 2-7 if interested.

III. INVESTIGATION ON THE EFFECT OF THE
RECOMBINATION STRATEGY IN TRIMOEA-TA&R

In this section, to investigate the effect of the recombina-
tion strategy, we compare TriMOEA-TA&R with its variant,
TriMOEA-TA, which does not employ the recombination
strategy. That is, in TriMOEA-TA, the diversity archive outputs
its solutions as the final solution set, no matter whether the
independent convergence-related decision variables are de-
tected or not. The parameter settings of TriMOEA-TA (except
the population size set to Noth) are the same as those of
TriMOEA-TA&R in Subsection IV.D in the main body of the
paper.

All the optimization problems can be classified into three
groups.

Group A. For the optimization problems in Group A,
there are two or more Pareto optimal solutions which have
different independent convergence-related decision variable
values for a point on the PF, e.g., A and B types of MMMOP1
and MMMOP2, C and D types of MMMOP3, MMMOP4,
MMMOP5, and MMMOP6.

Group B. For the optimization problems in Group B, the
Pareto optimal solutions corresponding to each point on the
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TABLE II
DEFINITIONS OF MMMOP1-6

MMMOP1

min f1(x) = (1 + g(XA, XB))x1x2 · · · xM−1

min f2(x) = (1 + g(XA, XB))x1x2 · · · (1− xM−1)

...
min fM−1(x) = (1 + g(XA, XB))x1(1− x2)
min fM (x) = (1 + g(XA, XB))(1− x1)
s.t. xi ∈ [0, 1], i = 1, 2, ..., n
with g(XA,XB) = 100[|XA|+ |XB| −

∑
xi∈XA

sin6(5πxi) +
∑

xi∈XB
(xi − 0.5)2 − cos(20π(xi − 0.5))]

Pareto optimal solution: x∗i = 0.1, 0.3, 0.5, 0.7, or 0.9, for x∗i ∈ XA and x∗i = 0.5, for x∗i ∈ XB .

MMMOP2

min f1(x) = (1 + g(XA, XB)) cos(xα1 π/2) · · · cos(x
α
M−2π/2) cos(x

α
M−1π/2)

min f2(x) = (1 + g(XA, XB)) cos(xα1 π/2) · · · cos(x
α
M−2π/2) sin(x

α
M−1π/2)

...
min fM (x) = (1 + g(XA, XB)) sin(xα1 π/2)
s.t. xi ∈ [0, 1], i = 1, 2, ..., n
with g(XA,XB) = |XA| −

∑
xi∈XA

sin(10 log(yi)) +
∑

xi∈XB
(xi − 0.5)2

yi = 9.75xi + 0.25, i = M, ...,M + kA − 1
Pareto optimal solution: y∗i = 0.333018, 0.624228, 1.170088, 2.193280, 4.111207, or 7.706277, for x∗i ∈ XA and x∗i = 0.5, for x∗i ∈ XB .

MMMOP3

min f1(x) = (1 + g(XA, XB)) cos(y1π/2) · · · cos(yM−2π/2) cos(yM−1π/2)
min f2(x) = (1 + g(XA, XB)) cos(y1π/2) · · · cos(yM−2π/2) sin(yM−1π/2)

...
min fM (x) = (1 + g(XA, XB)) sin(y1π/2)
s.t. xi ∈ [0, 1], i = 1, 2, ..., n
with g(XA,XB) = |XA|+

∑
xi∈XA

cos(2πcixi) +
∑

xi∈XB
(xi − 0.5)2

yi = xidi − bxidic, i = 1, 2, ...,M − 1
where di > 0, i = 1, ...,M − 1 is integer, and ci > 1, i = M, ...,M + kA − 1 is integer.
Pareto optimal solution: x∗i = 1

2ci
, 3
2ci

, ..., or 2ci−1

2ci
, for x∗i ∈ XA and x∗i = 0.5, for x∗i ∈ XB .

MMMOP4

min f1(x) = (1 + g(XA, XB)) cos(y1π/2) · · · cos(yM−2π/2) cos(yM−1π/2)
min f2(x) = (1 + g(XA, XB)) cos(y1π/2) · · · cos(yM−2π/2) sin(yM−1π/2)

...
min fM (x) = (1 + g(XA, XB)) sin(y1π/2)
s.t. xi ∈ [0, 1], i = 1, 2, ..., n
with g(XA,XB) = 100[|XA|+ |XB|+

∑
xi∈XA

cos(2πcixi) +
∑

xi∈XB
(xi − 0.5)2 − cos(20π(xi − 0.5))]

yi =



xidsum/di, if xidsum ≤ di
(xidsum − di)/di, if di < xidsum ≤ di + di − 1
(xidsum − di − (di − 1))/di, if di + di − 1 < xidsum ≤ di + di − 1 + di − 2

...
(xidsum − (dsum − 1))/di, if dsum − 1 < xidsum

, i = 1, 2, ...,M − 1

dsum = di(di + 1)/2
where di > 0, i = 1, ...,M − 1 is integer, and ci > 1, i = M, ...,M + kA − 1 is integer.
Pareto optimal solution: x∗i = 1

2ci
, 3
2ci

, ..., or 2ci−1

2ci
, for x∗i ∈ XA and x∗i = 0.5, for x∗i ∈ XB .

MMMOP5

min f1(x) = (1 + g(XA, XB)) cos(y1π/2) · · · cos(yM−2π/2) cos(yM−1π/2)
min f2(x) = (1 + g(XA, XB)) cos(y1π/2) · · · cos(yM−2π/2) sin(yM−1π/2)

...
min fM (x) = (1 + g(XA, XB)) sin(y1π/2)
s.t. xi ∈ [0, 1], i = 1, 2, ..., n
with g(XA,XB) = 100[|XA|+ |XB|+

∑
xi∈XA

cos(2πcixi) +
∑

xi∈XB
(xi − 0.5)2 − cos(20π(xi − 0.5))]

yi =



xidsum/2
di , if xidsum ≤ 2di

(xidsum − 2di )/2di−1, if 2di < xidsum ≤ 2di + 2di−1

(xidsum − 2di − 2di−1)/2di−2, if 2di + 2di−1 < xidsum ≤ 2di + 2di−1 + 2di−2

...
(xidsum − (dsum − 1))/20, if dsum − 1 < xidsum

, i = 1, 2, ...,M − 1

dsum = 2di+1 − 1
where di > 0, i = 1, ...,M − 1 is integer, and ci > 1, i = M, ...,M + kA − 1 is integer.
Pareto optimal solution: x∗i = 1

2ci
, 3
2ci

, ..., or 2ci−1

2ci
, for x∗i ∈ XA and x∗i = 0.5, for x∗i ∈ XB .

MMMOP6

min f1(x) = g(XA, XB) + cos(x1π/2) · · · cos(xM−2π/2) cos(xM−1π/2)
min f2(x) = g(XA, XB) + cos(x1π/2) · · · cos(xM−2π/2) sin(xM−1π/2)

...
min fM (x) = g(XA, XB) + sin(x1π/2)
s.t. xi ∈ [0, 1], i = 1, 2, ..., n
with g(XA,XB) =

∑
i=M,M+2,...,M+kA−2[(y

2
i + yi+1 − 11)2 + (yi + y2

i+1 − 7)2] +
∑

xi∈XB
(zi − ti)

2

yi = 12(xi − 0.5), i = M, ...,M + kA − 1
zi = 2cixi − 2bcixic − 1, i = M + kA, ..., n

ti =
∏
j=1,...,M−1 sin(2πxj +

(i−M−kA)π

kB
), i = M + kA, ..., n

where ci > 0, i = M + kA, ..., n is integer. kA must be even in MMMOP6.
Pareto optimal solution: (y∗i , y

∗
i+1) = (3.0, 2.0) or (−2.80511, 3.13131) or (−3.77931,−3.28318) or (3.58442,−1.84812),

for x∗i ∈ XA and z∗i = t∗i , for x∗i ∈ XB .
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(b) MMMOP1 (M = 3)
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(d) MMMOP2-6 (M = 3)

Fig. 1. PFs of MMMOP1-6.
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Fig. 2. PS of MMMOP1 with M = 2 and kA = 1. Each of the five lines
(i.e. PS1, ..., PS5) can be mapped to the whole PF.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x2

x1

PS1

PS2

PS3

PS4

PS5

PS6

Fig. 3. PS of MMMOP2 with M = 2 and kA = 1. Each of the six lines
(i.e. PS1, ..., PS6) can be mapped to the whole PF.
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(a) M = 2, kA = 0, d1 = 3
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Fig. 4. PSs of MMMOP3. Each optimal region (e.g., PS1, PS2, ...) can be
mapped to the whole PF.
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Fig. 5. PF and PS of MMMOP4 (M = 2, kA = 0, d1 = 4). PS4 can
be mapped to the whole Pareto front, whereas PS2 can only be mapped to
PF2 ∪ PF3 ∪ PF4, PS3 to PF3 ∪ PF4, and PS4 to PF4. Consequently,
each point on PF1, PF2, PF3, and PF4 is corresponded to 4, 3, 2, and 1
Pareto optimal solution(s), respectively.
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Fig. 6. PSs of MMMOP5. Each optimal region (e.g., PF1,PF2,...) can be
mapped to the whole PF. However, they have different spaces.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

x2

x1

PS1

PS2

(a) M = 2, kA = 0, c1 = 2
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Fig. 7. PSs of MMMOP6. Each optimal region (e.g., PF1,PF2,...) can be
mapped to the whole PF.

PF have the same independent convergence-related decision
variable values, e.g., A and B types of MMMOP3, MMMOP4,
MMMOP5.

Group C. The optimization problems in Group C have no
independent convergence-related decision variable, e.g., A and
B types of MMMOP6, and MMF1-8.

In Table III, we show the results of IGDM, GD [3], and
runtime obtained by TriMOEA-TA&R and TriMOEA-TA on
Group A and B. We do not show the results on Group C,
since TriMOEA-TA&R does not employ the recombination
strategy when the independent convergence-related decision
variables are not detected by the decision variable analytical
technique. In this situation, TriMOEA-TA&R and TriMOEA-
TA behave exactly the same. In Table III, ‘+’ (‘−’) indicates
that TriMOEA-TA&R shows significantly better (worse) per-
formance than TriMOEA-TA. ‘=’ indicates that there is no
significant difference between the compared results.

From Table III, we can see that TriMOEA-TA&R sig-
nificantly outperforms TriMOEA-TA on most test prob-
lems in Group A according to IGDM. However, TriMOEA-
TA&R achieves a worse IGDM value than TriMOEA-TA
on MMMOP2-B. The reason is that the improper setting of
σniche results in missing peak solutions in the convergence
archive, which considerably reduces the TriMOEA-TA&R’s
ability in obtaining all the parts of PS on MMMOP2-B. On
the other hand, TriMOEA-TA does not count on the peak
solutions, since it does not employ the recombination strategy.
According to the results of GD and runtime, TriMOEA-TA&R
has significant better convergence performance and runs faster
than TriMOEA-TA on all test problems in Group A.
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(a) MMMOP1-A by TriMOEA-TA&R
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(b) MMMOP1-A by MO Ring PSO SCD
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(c) MMMOP1-A by DN-NSGA-II

Fig. 8. Achieved solution sets of MMMOP1-A by different algorithms.
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Fig. 9. Achieved solution sets of MMMOP2-A by different algorithms.
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Fig. 10. Achieved solution sets of MMMOP3-B by different algorithms.
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(a) MMMOP4-D by TriMOEA-TA&R  
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(c) MMMOP4-D by DN-NSGA-II

Fig. 11. Achieved solution sets of MMMOP4-D by different algorithms.
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Fig. 12. Achieved solution sets of MMMOP5-B by different algorithms.
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Fig. 13. Achieved solution sets of MMMOP6-B by different algorithms.

TABLE III
COMPARISON BETWEEN TRIMOEA-TA&R AND TRIMOEA-TA

 

Group A

MMMOP1-A 4.200E-3 + 2.632E-1 3.500E-5 + 4.364E-3 2.684E+0 + 4.522E+1

MMMOP1-B 7.961E-2 + 2.839E-1 1.257E-3 + 1.139E-1 3.093E+0 + 6.760E+1

MMMOP2-A 1.377E-1 + 3.739E-1 1.626E-3 + 3.750E-3 2.646E+0 + 6.531E+1

MMMOP2-B 3.732E-1 - 2.735E-1 3.504E-3 + 3.956E-3 3.504E+0 + 9.721E+1

MMMOP3-C 1.718E-2 = 2.209E-1 4.318E-4 + 3.160E-3 6.607E+0 + 1.100E+2

MMMOP3-D 5.865E-2 = 5.471E-2 4.564E-4 + 3.763E-3 1.354E+1 + 1.337E+2

MMMOP4-C 3.251E-2 + 4.289E-1 9.730E-4 + 3.620E-3 8.646E+0 + 4.485E+1

MMMOP4-D 5.833E-2 + 1.545E-1 1.343E-3 + 5.945E-2 1.283E+1 + 1.004E+2

MMMOP5-C 1.076E-1 + 4.774E-1 1.403E-3 + 5.542E-2 7.009E+0 + 3.976E+1

MMMOP5-D 5.250E-2 + 2.132E-1 1.704E-3 + 7.965E-3 1.297E+1 + 1.226E+2

MMMOP6-C 2.544E-1 + 7.405E-1 2.173E-4 + 3.540E-4 7.131E+0 + 2.506E+1

MMMOP6-D 1.347E-1 + 4.527E-1 5.685E-3 + 2.764E-2 3.187E+1 + 1.586E+2

Group B

MMMOP3-A 5.125E-3 = 5.232E-3 0.000E+0 + 1.480E-4 6.767E+0 = 6.678E+0

MMMOP3-B 5.411E-2 + 5.661E-2 2.000E-5 + 5.169E-3 6.895E+1 = 5.005E+1

MMMOP4-A 5.311E-3 = 5.332E-3 6.080E-7 + 8.478E-3 9.323E+0 = 9.678E+0

MMMOP4-B 6.022E-2 = 5.920E-2 2.492E-3 + 6.063E-3 1.496E+1 = 1.523E+1

MMMOP5-A 4.925E-3 + 6.689E-3 0.000E+0 + 3.789E-3 1.261E+1 = 1.307E+1

MMMOP5-B 5.325E-2 = 5.314E-2 2.088E-3 + 3.541E-2 1.450E+1 = 1.520E+1

Runtime (Unit: Sec)

Runtime (Unit: Sec)

TriMOEA-

TA

TriMOEA-

TA&R

IGDM

TriMOEA-

TA

IGDM GD

TriMOEA-

TA&R

TriMOEA-

TA&R

TriMOEA-

TA

GD

For the test problems in Group B, TriMOEA-TA&R signifi-
cantly performs better than TriMOEA-TA only on MMMOP3-
B and MMMOP5-A according to IGDM. However, it obtains
significantly better GD values on all test problems. The two
algorithms do not show significant difference on runtime.

From the above observations, we can conclude that for
TriMOEA-TA&R, (1) the recombination strategy can improve
the convergence performance and reduce the computational
cost for the optimization problems in Group A; (2) the

recombination strategy can improve the convergence perfor-
mance for the optimization problems in Group B; and (3) the
recombination strategy will not incur additional computational
expense for the optimization problems in Group C, since it will
not be employed for these problems.

IV. SENSITIVITY ANALYSES OF THE PARAMETERS IN
TRIMOEA-TA&R

In this section, we examine the effects of σniche and pcon
on the behavior of TriMOEA-TA&R. The parameter settings
in this section are the same as those in the Subsection IV.D in
the main body of the paper if they are not expressly stated.

A. Effect of Parameter σniche on Finding Peak Solutions

Finding all the peak solutions is very important for
TriMOEA-TA&R. In this subsection, the effect of parameter
σniche on finding peak solutions in the convergence archive is
investigated. MMMOP1-B is chosen as an example. Note that
similar results can also be obtained on other test instances.
Fig. 14 shows the average number of peak solutions w.r.t.
σniche achieved in the convergence archive on MMMOP1-B
in 30 runs. In these 30 runs, pcon is set to 1. This means that
only the convergence archive is active for evolution. Since
there are five Pareto optimal solutions which have different
independent convergence-related decision variable values for
each point on the PF of MMMOP1-B, it is best to find five
peak solutions in the convergence archive.



LIU et al.: SUPPLEMENTARY MATERIAL OF TriMOEA-TA&R 7

0

1

2

3

4

5

0 0.04 0.08 0.12 0.16 0.2 0.24

A
v

er
ag

e 
N

u
m

b
er

 o
f 

P
ea

k
s

σniche

Average Number of Peaks

Fig. 14. The average number of peak solutions w.r.t. σniche achieved in the
convergence archive on MMMOP1-B.
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Fig. 15. The average number of peak solutions and IGDM w.r.t. pcon achieved
in the convergence archive on MMMOP1-B.

We can see from Fig. 14 that as σniche increases from 0.02
to 0.08, the convergence archive can find more peak solutions.
This indicates that a large value of σniche can increase the
ability of the convergence archive in finding peak solution.
However, when σniche is larger than 0.1, the average number
of peak solutions declines. Particularly, the average number
of peak solutions declines falls rapidly when σniche ≥ 0.2.
The reason is that the distance between two different closest
Pareto optimal solutions in the independent convergence-
related decision space is 0.2 in MMMOP1-B. This suggests
that too much large value of σniche will result in missing peak
solutions. Therefore, for a given MMMOP, we need to set
σniche to a proper value to find all the peak solution. Similarly,
for the diversity maintenance in the diversity archive, σniche
should also be tuned to achieve the best performance.

B. Effect of Parameter pcon on Finding Peak Solutions

We investigate the effect of parameter pcon on finding peak
solutions in this subsection. MMMOP1-B is chosen as an
example and similar results can also be obtained on other test
instances. Fig. 15 shows the average number of peak solutions
and IGDM w.r.t. pcon obtained on MMMOP1-B in 30 runs.
pcon = 0 indicates that only the diversity archive is active for
evolution.

From Fig. 15, we can see that as pcon increases, the average
number of peak solutions increases, and it becomes flat when
pcon > 0.5. When pcon < 0.5, the value of IGDM decreases
rapidly. However, it increases when pcon > 0.5. The reason
is that when pcon < 0.5, the larger value of pcon, the larger
number of peak solutions are found. Then more non-dominated
solutions can be achieved by the recombination strategy and a
better IGDM value can be obtained. When pcon > 0.5, almost
all the peak solutions can be found, and a large value of pcon
will decrease the ability of the diversity archive in promoting
diversity. Thus the value of IGDM increases as pcon increases.
Therefore, we recommend to set pcon to 0.5 to balance the
searching requirements from the convergence and the diversity
archives.

C. Effect of Parameter pcon on Converging

The effect of parameter pcon on converging is examined in
this subsection. We chose MMMOP3-B and MMMOP3-E as
examples. In MMMOP3-E, M = 6, kA = 0, kB = 5, d1 =
d2 = 2, d3 = d4 = d5 = 1. To avoid the possible effect
of the recombination strategy, TriMOEA-TA is adopted in
this subsection. When solving MMMOP3-E, the population
size is set to 528, σniche is set to 0.3, and the size of
F ∗ is set to 1308 for calculating IGDM. Figs. 16 and 17
shows the curves of GD and IGD w.r.t. generations obtained
by TriMOEA-TA on MMMOP3-B and MMMOP3-E when
pcon = 0, 0.2, 0.4, 0.6, 0.8, 1, respectively. Since the algorithm
has almost converged after about 100 generations, we only
show the curves before 200 generations.

We can see from Figs. 16 and 17 that in general, the larger
value of pcon, the smaller value of GD and the faster conver-
gence rate. This phenomenon is more obvious on MMMOP3-
E, since MMMOP3-E is a many-objective optimization prob-
lem [4] and it is more difficult to obtain solutions that close to
the PF. This suggests that the convergence archive with a large
value of pcon can promote the convergence performance a lot.
On the other hand, we can observe that a too large value of
pcon results in a large value of IGDM. Particularly, the value
of IGDM increases with generations when pcon = 1 after
the first several generations. The reason is that the diversity
archive fails to maintain diversity under this setting. Therefore,
without the recombination strategy, we recommend to set pcon
to 0.2 to get a good overall performance.

D. Ranks in the archives

To investigate why the convergence archive can improve
the convergence performance, we show the percentages of
candidate solutions with different ranks in the two archives
when solving MMMOP3-E with σniche set to 0.3 and the
population size set to 528, 792, and 1056, respectively, in
Fig. 18. We also show the results with the population size set
to 528 and the σniche set to 0.1, 0.2, 0.4, and 0.5, respectively.
The first four ranks and the remainder solutions are shown in
different colors.

From Fig. 18, we can see that in all cases of the diversity
archive, i.e., (a), (b), and (c), the percentage of solutions
in the first rank grows quickly in the first few generations,
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Fig. 16. The curves of GD and IGD w.r.t. generations obtained by TriMOEA-TA on MMMOP3-B when pcon = 0, 0.2, 0.4, 0.6, 0.8, 1.
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(c) AD(N = 1056, σniche = 0.3)

 
 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 101 201 301 401

P
er

ce
n

ta
g

e

Generations

Rank 1 Rank 2 Rank 3 Rank 4 Remainder

(d) AC(N = 528, σniche = 0.3)
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Fig. 18. The percentages of ranks in the convergence and the diversity archives.
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TABLE IV
RESULTS OF PSP

 

MMMOP1-A 3.960E+02 7.511E+00 + 8.179E-01 +

MMMOP1-B 2.052E+01 2.590E+00 + 1.982E+00 +

MMMOP2-A 2.213E+01 4.682E+01 - 1.252E+00 +

MMMOP2-B 3.620E+01 4.092E+00 + 3.058E+00 +

MMMOP3-A 1.189E+03 1.399E+02 + 1.101E+02 +

MMMOP3-B 2.967E+01 6.105E+00 + 5.071E+00 +

MMMOP3-C 8.349E+02 9.849E+00 + 1.854E+00 +

MMMOP3-D 5.267E+01 5.764E+00 + 4.415E+00 +

MMMOP4-A 9.942E+02 2.628E+02 + 8.018E+02 +

MMMOP4-B 5.072E+01 2.554E+00 + 2.309E+00 +

MMMOP4-C 9.399E+02 2.657E+00 + 1.725E+00 +

MMMOP4-D 5.061E+01 2.740E+00 + 2.210E+00 +

MMMOP5-A 1.351E+03 2.994E+02 + 9.937E+02 +

MMMOP5-B 5.601E+01 2.748E+00 + 2.474E+00 +

MMMOP5-C 8.837E+02 2.992E+00 + 1.467E+00 +

MMMOP5-D 5.599E+01 2.887E+00 + 2.333E+00 +

MMMOP6-A 2.157E+02 1.179E+02 + 2.772E+01 +

MMMOP6-B 1.556E+01 1.274E+01 + 4.178E+00 +

MMMOP6-C 8.831E+00 5.786E+00 + 1.277E+00 +

MMMOP6-D 1.586E+01 5.582E+00 + 2.903E+00 +

Sumup of MMMOP + \ - \ =

MMF1 1.127E+02 1.362E+02 - 9.378E+01 +

MMF2 1.075E+02 1.116E+02 = 6.941E+01 =

MMF3 3.752E+01 4.693E+01 - 3.058E+01 +

MMF4 3.286E+02 2.356E+02 + 7.651E+01 +

MMF5 1.100E+02 1.212E+02 - 4.026E+01 +

MMF6 1.044E+02 1.011E+02 = 4.283E+01 +

MMF7 2.612E+02 2.194E+02 + 1.936E+02 +

MMF8 6.096E+01 3.466E+02 - 1.316E+02 -

Sumup of MMF + \ - \ =

Sumup of All + \ - \ = 26 \ 1 \ 1

PSP
TriMOEA-

TA&R

MO_Ring_

PSO_SCD
DN-NSGA-II

2 \ 4 \ 2

21 \ 5 \ 2

19 \ 1 \ 0 20 \ 0 \ 0

6 \ 1 \ 1

and then remains at more than 70%. Since only 50% of the
candidate solutions can be selected into the next generation,
the selected ones in the diversity archive are usually in the first
rank. This implies that the diversity archive has difficulty in
distinguishing solutions with good convergence. On the other
hand, when setting σniche to 0.3 in the convergence archive,
the percentage of solutions in the first rank goes down below
50% in all the cases, i.e., (d), (e), and (f). As the population
size increases, the solutions are assigned into more ranks. The
reason is that σniche is fixed in (d), (e), and (f). However,
if σniche is set too small, e.g., 0.1 or 0.2 in (g) or (h), the
solutions in the convergence archive are almost in the same
rank. Conversely, we can see from (i) and (j) that a larger
σniche results in more ranks. This suggests that σniche should
not be set at a very small value, so that the convergence
archive has a good ability in selecting solutions with good
convergence.

V. COMPARISON AMONG TRIMOEA-TA&R,
MO RING PSO SCD, AND DN-NSGA-II USING PSP,

AND COMPARISON BETWEEN IGDM AND PSP
In Table IV, we show the mean values of PSP [1] obtained

by TriMOEA-TA&R, MO Ring PSO SCD, and DN-NSGA-
II on MMMOP1-6 and MMF1-8. ‘+’ (‘−’) indicates that
TriMOEA-TA&R shows significantly better (worse) perfor-
mance in the comparison. ‘=’ indicates that there is no
significant difference between the compared results.

From Table IV, we can see that TriMOEA-TA&R signif-
icantly outperforms the other algorithms on most test prob-

TABLE V
RESULTS OF DIFFERENT METRICS

  PSA PSB PSC PSD 

IGDM 3.962E-03 1.669E-01 3.993E-03 3.553E-01 

IGDX 2.258E-01 2.523E-03 4.521E-01 2.553E-03 

MS 1.000E+00 1.000E+00 9.949E-01 3.970E-01 

CR 1.000E+00 1.000E+00 3.662E-01 9.966E-01 

PSP 4.428E+00 3.964E+02 8.100E-01 3.904E+02 

 

lems. However, the result of PSP and IGDM in Table II in
the main body of the paper are inconsistent on some test
problems. For example, according to IGDM, TriMOEA-TA&R
significantly performs better than MO Ring PSO SCD on
MMMOP2-A, and there is no significant difference between
them on MMF1 and MMF3-5. On the other hand, according
to PSP, MO Ring PSO SCD achieves significantly better
performance than TriMOEA-TA&R on MMMOP2-A, MMF1,
MMF3, and MMF5, and TriMOEA-TA&R is the better one
on MMF4.

There are two main reasons for the inconsistence between
IGDM and PSP. The first is that PSP evaluates the uniformity
of a solution set only in the decision space, since IGDX is
a component of PSP. However, IGDM aims at evaluating the
diversity performances both in the objective and the decision
spaces. The second is that both IGDX and CR [1] in PSP
measure the spread of a solution set in the decision space.
Therefore, the spread of a solution set in the decision space
dramatically affects the value of PSP.

Let us observe the difference between IGDM and PSP using
a simple example. PSA, PSB, PSC, and PSD are four PSs of
MMMOP2-A. Their corresponding PFs in the objective space
are PFA, PFB, PFC, and PFD, respectively. Fig. 19 shows
the distributions of these PSs and PFs. PSA is exactly the same
as the PS shown in Fig. 3. Except the six leftmost solutions,
the x1 values of all the solutions in PSA are larger than 0.95.
PSA is uniformly located on the PF in the objective space.
The solutions in PSB are uniformly distributed on each line
in the decision space. However, the solutions are becoming
denser with the increase of f1 in the objective space. Except
the leftmost solutions, the values of f1 of all the solutions in
PFB are larger than 0.8. PSC are the solutions in PSA with
the six leftmost solutions deleted. PSD are the solutions in
PSB with the six rightmost solutions deleted. Then, all the
solutions in PSC (PFD) concentrate in a small region in the
decision (objective) space.

Table V gives the results of IGDM, IGDX, MS [5], CR,
and PSP of the four PSs in gray scale, where a darker tone
corresponds to a worse value of each metric.

From Table V, we can see that both MS and CR of PSA

and PSB are 1, since they cover both the whole true PF and
PS. PSB has a much better value of IGDX as well as PSP
than PSA, because it is more uniform in the decision space.
Conversely, the IGDM value of PSA is better than PSB. Due
to the low coverage of the true PS, PSC has a poor value
of IGDX and CR and thus an extremely poor value of PSP.
However, its IGDM value is much better than those of PSB
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Fig. 19. The distributions of PSA, PSB, PSC, PSD, and their corresponding PFs.
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and PSD, and its PF still shows a good coverage on the true
PF according to MS. The IGDX, CR, and PSP values of PSD

are slightly worse than those of PSB. However, its IGDM
and MS values are the worst due to its poor distribution in the
objective space.

We can observe from this example that the value of PSP
is mainly dependent on the distribution of solutions in the
decision space, especially the spread of solutions. This is why
PSP behaves differently from IGDM.

VI. COMPUTATIONAL COMPLEXITY ANALYSIS OF
TRIMOEA-TA&R

In each generation, the main difference between the pro-
posed TriMOEA-TA&R and most existing MOEAs lies in
the environmental selection strategy, where TriMOEA-TA&R
adopts a two-archive based selection strategy. In the following,
we analyze the computational complexity of this strategy.

Assume there is a population with its size of N to solve
an optimization problem with M objectives and n decision
variables, and the sizes of the convergence and the diversity
archives are both equal to the population size. For the conver-
gence archive, the complexity of calculating the convergence
indicator and the distances in the decision space and sorting
solutions in terms of the convergence indicator are O (MN),
O
(
nN2

)
, and O

(
N2

)
, respectively. Supposing that M and n

are in the same order of magnitude, and they are smaller than
N , the complexity of the selection strategy in the convergence
archive is O

(
MN2

)
. Similarly, for the diversity archive, the

complexity of calculating the Pareto dominance relationship
and the distances in the decision space and clustering in
terms of the reference points are O

(
MN2

)
, O

(
nN2

)
, and

O
(
N2

)
. Thus the complexity of the selection strategy in the

diversity archive is also O
(
MN2

)
. In general, the overall

complexity of the algorithm will be O
(
MN2

)
, which is the

same to that of most state-of-the-art MOEAs, e.g., NSGA-II
[6]. Therefore, TriMOEA-TA&R is computationally efficient.
In addition, as aforementioned in Subsection III.E in the main
body of the paper, TriMOEA-TA&R would require a much
smaller population than traditional MOEAs.
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