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Abstract—There have been few researches on solving multi-
modal multi-objective optimization problems, whereas they are
commonly seen in real-world applications but difficult for the
existing evolutionary optimizers. In this study, we propose a novel
multi-modal multi-objective evolutionary algorithm using two-
archive and recombination strategies. In the proposed algorithm,
the properties of decision variables and the relationships among
them are analyzed at first to guide the evolutionary search. Then,
a general framework using two archives, i.e., the convergence
and the diversity archives, is adopted to cooperatively solve
these problems. Moreover, the diversity archive simultaneously
employs a clustering strategy to guarantee diversity in the
objective space and a niche-based clearing strategy to promote
the same in the decision space. At the end of evolution process,
solutions in the convergence and the diversity archives are
recombined to obtain a large number of multiple Pareto optimal
solutions. In addition, a set of benchmark test functions and a
performance metric are designed for multi-modal multi-objective
optimization. The proposed algorithm is empirically compared
with two state-of-the-art evolutionary algorithms on these test
functions. The comparative results demonstrate that the overall
performance of the proposed algorithm is significantly superior
to the competing algorithms.

Index Terms—Multi-modal multi-objective optimization, evo-
lutionary optimization, convergence, diversity, niche, recombina-
tion.

I. INTRODUCTION

MULTI-objective optimization problems (MOPs) are
commonly seen in a variety of disciplines. They involve

multiple objectives to be optimized simultaneously. Due to
the conflicting nature of objectives, there is no single optimal
solution to an MOP, rather a set of trade-off solutions, known
as the Pareto optimal solution set.

Over the past two decades, a large number of Multi-
Objective Evolutionary Algorithms (MOEAs) have been pro-
posed to solve MOPs, e.g., elitist Non-dominated Sorting
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Genetic Algorithm II (NSGA-II) [1], advanced Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [2], and MOEA Based
on Decomposition (MOEA/D) [3], to name a few. Compared
to traditional mathematical programming techniques, MOEAs
are particularly suited in searching for the Pareto optimal
solution set in one single run. Generally, the goal of MOEAs
is to find solutions not only close to the Pareto optimal front
(i.e., convergence performance), but also uniformly and widely
distributed (i.e., diversity performance in the objective space).

In real-world applications, many MOPs also exhibit multi-
modal properties [4], [5], e.g., multi-objective knapsack op-
timization problem [6], architecture layout design problem
[7], multi-objective scheduling problem [8] and map-based
problem [9]. That means multiple different Pareto optimal
solutions coexist in the decision space for the same point on
the Pareto optimal front. We define these problems to be Multi-
Modal Multi-Objective Optimization Problems (MMMOPs).
To successfully solve an MMMOP, we need to find all the
Pareto optimal solutions for each point on the Pareto optimal
front. Intuitively, if an MOEA is applied to deal with an
MMMOP, only one single Pareto optimal solution can usually
be found for a point on the Pareto optimal front, since
maintaining multiple Pareto optimal solutions in the decision
space is not considered a design goal in the current MOEAs.
Even if the MOEA is applied several times, not all Pareto
optimal solutions to the MMMOP are guaranteed to be found.

On the other hand, there have been a great deal of re-
searches on EAs to solve Multi-Modal Optimization Prob-
lems (MMOPs), aiming to find multiple optimal solutions
for a single-objective optimization problem. Among various
designs, niching methods are the most popular ones, e.g.,
fitness sharing [10] and crowding [11]. However, all these
methods can only solve single-objective MMOPs.

Solving MMMOPs is definitely not an easy task by simply
combining MOEAs with the above niching methods. There
exist two major issues for EAs on tackling MMMOPs. The
first issue is that EAs need to maintain a diverse population
both in the objective and the decision spaces (i.e. diversity
performances in the objective and the decision spaces, respec-
tively), while converging the population towards the Pareto
optimal front (i.e. convergence performance). Thus a selection
strategy that can well balance these three performances is a
must. Moreover, diversities in the objective and the decision
spaces are quite different requirements. The former means to
find a uniformly and widely distributed Pareto optimal solution
set in the objective space, whereas the latter does not imply
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that in the decision space. When tackling an MMMOP that
has bias in the decision space (see Benchmark MMMOP2
in Subsection IV.A for example), searching for uniformly
distributed solutions in the decision space will result in poor
diversity performance in the objective space. The second issue
is that maintaining diversities both in the objective and the
decision spaces may require an extremely large population.
Assuming an MMMOP with each point on its Pareto front
corresponding to i (e.g., 20) Pareto optimal solutions and
j (e.g. 100) individuals (i.e., solutions) being to express a
diverse population in the objective space, we will need a
population with at least i× j (e.g., 2,000) individuals to solve
the MMMOP. Such a large population will consume significant
computing resources during the evolution process, especially
if the objective functions are computationally expensive to
evaluate.

In this study, we propose a novel Multi-Modal Multi-
Objective Evolutionary Algorithm using Two-Archive
and Recombination strategies (TriMOEA-TA&R) to solve
MMMOPs. In the proposed algorithm, the independent
convergence-related decision variables are detected by a
decision variable analytical technique before the evolution.
These decision variables have no interaction with the
other variables and can be optimized separately. Moreover,
optimizing them only contributes to convergence improvement
in the objective space. We define the search space of these
decision variables as the independent convergence-related
decision subspace. There are two archives in the proposed
algorithm, i.e., the convergence and the diversity archives,
which have different tasks. The convergence archive focuses
on locating diverse converged solutions in the independent
convergence-related decision subspace. Meanwhile, the
diversity archive aims at maintaining diversity in the objective
space and the remainder decision subspace (i.e. removing
the independent convergence-related decision subspace from
the total search space). In each generation, a new population
is formed by the offspring of solutions in these archives.
Conversely, the archives are updated based on the new
population. At the end of the evolution process, a final
solution set with good overall performance is constructed by
recombining the superior solutions in the archives.

The main contributions of this work can be summarized as
follows:

First, a multi-modal multi-objective evolutionary algo-
rithm using two-archive and recombination strategies, termed
TriMOEA-TA&R is presented. It can achieve a Pareto optimal
solution set with good convergence and diversities both in
the objective and the decision spaces. There are two major
strategies in TriMOEA-TA&R. The first is the two-archive
strategy, where the division of labor makes the optimizing
work easier. The other is the recombination strategy, which
can generate a large number of Pareto optimal solutions based
on the analysis of decision variables.

Next, a set of novel benchmark MMMOPs is proposed.
These benchmark test functions are all scalable. Their building
blocks are originated from the most popular benchmarks
in multi-modal optimization and multi-objective optimization
to preserve the designed problem characteristics. They also

incorporate different new features in terms of the complexity
of MMMOPs. These benchmarks can comprehensively and
efficiently test an optimizer’s ability in solving MMMOPs.

Last but not least, a novel performance metric, Inverted
Generational Distance-Multi-modal (IGDM), is proposed to
assess the performance of the solution set obtained by a multi-
modal multi-objective optimizer. IGDM is an extension of
Inverted Generational Distance (IGD) [12]. It can measure the
convergence performance and the diversity performances both
in the objective and the decision spaces.

The remainder of this paper is organized as below. In Sec-
tion II, the related works on multi-objective optimization and
multi-modal optimization are reviewed for the completeness
of the presentation and the motivation of this work is also
elaborated. The proposed algorithm is then described in detail
in Section III. Section IV presents the experimental design,
test functions, and performance indicator for investigating
the performance of the proposed algorithm. The experimental
results and relevant discussions are given in Section V. Section
VI concludes the paper and provides pertinent observations
and future research directions.

II. PRELIMINARIES

A. Multi-Objective Evolutionary Optimization

Without loss of generality, an MOP can be mathematically
expressed as follows [13]:

min /maxf(x) = min /max(f1 (x), f2(x), ..., fM (x))
s.t. x ∈ S ⊂ Rn

(1)
where x = (x1, ..., xn) represents an n-dimensional decision
vector in the search space S. fm(x),m = 1, ...,M , is the m-th
objective to be minimized/maximized, and M is the number of
objectives. Note that we only consider MOPs (and MMMOPs)
with no constraint or box constraints in this study.

In multi-objective optimization, the following concepts have
been well defined and widely adopted [14].

Pareto Dominance: For any two different solutions, x1 and
x2, to the MOP in Eq. (1), if there is no objective where x1 is
worse than x2, and there exists at least one objective where x1

is better than x2, then x1 dominates x2, denoted as x1 ≺ x2.
Local Pareto Optimal Solution: For a solution x′, if there

exists no solution x satisfying ||x − x′||∞ ≤ ε, where ε is a
small positive number, dominates x′, then x′ is a local Pareto
optimal solution. (||v||∞ is the infinity norm of v.)

Global Pareto Optimal Solution: If there exists no solution
in the search space that dominates x∗, then x∗ is a global
Pareto optimal solution.

Pareto Optimal Solution Set: All the global Pareto optimal
solutions form a set called the Pareto optimal solution set (PS).

Pareto Optimal Front: The image of the Pareto optimal
solution set in the objective space is known as the Pareto
optimal front (PF).

Pareto-based MOEAs are the most popular algorithms to
solve MOPs. These algorithms first adopt the Pareto domi-
nance principle to select non-dominated solutions which are
always preferred for good convergence. Then a density-based
selection criterion is employed to promote a good diversity
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among the solutions. There are various density-based selection
criteria in Pareto-based MOEAs, e.g., crowding distance in
NSGA-II [1] and k-nearest method in SPEA2 [2]. Pareto-
based MOEAs have been proven successful in solving a large
number of MOPs.

The decomposition-based MOEAs are found to be a promis-
ing alternative to solve MOPs, MOEA/D [3] is well-regarded
representative. In MOEA/D, a set of well distributed reference
vectors are first defined. Individuals (solutions) in a population
are guided to search towards the PF in the directions specified
by the reference vectors.

Indicator-Based Evolutionary Algorithms (IBEA) [15] are
theoretically well-supported options to the Pareto-based
MOEAs. It adopts a performance indicator to account for
both convergence and diversity of a solution. Among others,
hypervolume (HV) [16] is a widely used indicator in IBEAs.

Recently, solving MOPs with a large number of objectives
gained much attention. Some MOEAs have been proposed to
balancing convergence and diversity in the high dimensional
objective space, such as [17]–[19].

From the above, we can see that MOEAs are designed to
obtain a well converged and distributed solution set in the
objective space. Due to the lacking of diversity maintenance
techniques in the decision space, they are incapable of solv-
ing MMMOPs. In this study, the proposed TriMOEA-TA&R
can overcome this issue and provides diverse Pareto optimal
solutions in the decision space to a given MMMOP.

B. Multi-Modal Evolutionary Optimization

Multi-modal evolutionary algorithms focus on locating mul-
tiple optimal solutions in a single run. Niching methods [20]
are commonly used as the diversity-preserving mechanism in
these EAs, where fitness sharing [10], crowding methods [11]
are the classic choices. In fitness sharing methods, individuals
in the same neighborhood will degrade each other’s fitness,
thereby discouraging the number of individuals occupying the
same niche. In crowding methods, an offspring and its close
parents compete with each other, and individuals with better
fitness in the sparse areas are favored. There are a lot of
niche-based evolutionary algorithms developed in the last two
decades, e.g., clearing-based genetic algorithm [21], cluster-
based differential evolution [22], locally informed particle
swarm optimization [23], and transformation technique based
on multi-objective optimization [24].

However, all the above methods can find multiple optimal
solutions only for a single-objective optimization problem. In
this study, we aim at designing a novel multi-modal evolution-
ary algorithm that is effective on multi-objective optimization
problems.

C. Multi-Modal Multi-Objective Optimization

1) What is an MMMOP: To our best knowledge, multi-
modal multi-objective optimization problems (MMMOPs)
were first introduced in [4], and recently defined in [5]. In [5],
MMMOPs were defined as the MOPs which have more than
one Pareto optimal set, i.e., there are at least two different
feasible regions in the decision space corresponding to the

same region of the objective space. Actually, some MOPs
(e.g., the one in Eq. (2) that will be discussed later) do not
have multiple different feasible regions, but multiple different
Pareto optimal solutions in the decision space corresponding to
the same point in the objective space. These MOPs should also
be classified as MMMOPs. Therefore, based on the definitions
in Subsection II.A, we give a more general definition of an
MMMOP in this study.

Definition of an MMMOP: For an MOP in Eq. (1), if there
exists at least one local Pareto optimal solution or at least two
different global Pareto optimal solutions for any point on the
PF, then the MOP is considered an MMMOP.

Intuitively, it is much more complicated to solve an MM-
MOP by finding its local Pareto optimal solution(s). One issue
is how to justify whether the local Pareto optimal solutions
are really needed by the decision maker, since their objective
values are not good. Another issue is how to achieve the
desired local Pareto optimal solutions while not to get trapped
into the needless local optimal regions. At the early stage
of the research on MMMOPs, we only consider solving an
MMMOP with multiple global Pareto optimal solutions for a
point on its PF in this paper. In other words, our goal is to
find the different global Pareto optimal solutions at the same
location on a PF in this study. For brevity, we refer to a global
Pareto optimal solution as a Pareto optimal solution in the rest
of the paper.

MMMOPs are commonly seen in real-world applications.
Let us discuss a simple example in multi-objective knapsack
optimization problem [6]. Assume that Max is a salesperson
who sells ice creams. There are six kinds of ice creams
(ICi, i = 1, ..., 6), and they have different monetary profits
(p1 = 4, p2 = 6, p3 = 3, p4 = 7, p5 = 5, p6 = 2) and shelf
lives (q1 = 6, q2 = 4, q3 = 7, q4 = 3, q5 = 5, q6 = 2). Since
the refrigerator can only store three kinds of ice creams, Max
has to select three different kinds of ice creams to maximize
the total monetary profit and shelf life. This problem can be
formulated as follows:

max f1(x) =
∑

i=1,...,6 pixi
max f2(x) =

∑
i=1,...,6 qixi

(2)

where f1(x) is the total monetary profit, f2(x) is the total
shelf life, x = (x1, ..., x6),

∑
i=1,...,6 xi = 3, and xi = 1 or 0

means that ICi is selected or not, respectively.
All the Pareto optimal solutions to the problem in Eq. (2)

are listed as follows:

x∗1 = (1, 0, 1, 0, 1, 0),x∗2 = (1, 1, 1, 0, 0, 0),
x∗3 = (1, 0, 1, 1, 0, 0),x∗4 = (0, 1, 1, 0, 1, 0),
x∗5 = (1, 1, 0, 0, 1, 0),x∗6 = (0, 0, 1, 1, 1, 0),
x∗7 = (0, 1, 1, 1, 0, 0),x∗8 = (1, 0, 0, 1, 1, 0),
x∗9 = (1, 1, 0, 1, 0, 0),x∗10 = (0, 1, 0, 1, 1, 0).

(3)

The PF of the problem is shown in Fig. 1, where the Pareto
optimal solutions are presented as black solid dots. We can
see from Fig. 1 that x∗3 and x∗4, x∗5 and x∗6, and x∗7 and x∗8
have the same objective values, respectively, i.e, they are the
same point in the objective space, respectively, whereas they
are different solutions in the decision space. Therefore, the
problem in Eq. (2) is an MMMOP.
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Fig. 1. Pareto optimal front of the optimization problem in Eq. (2).

2) Why solve an MMMOP: In multi-objective evolutionary
optimization, the general task of an MOEA is to search for
an evenly and widely distributed (in the objective space)
Pareto optimal solution set. Then, the decision maker chooses
one solution among them according to his/her preference.
However, in real-world applications, due to some factors that
are difficult to capture in the mathematical model, the solutions
achieved by optimizing this model could be infeasible in
practice. Therefore, providing multiple different Pareto opti-
mal solutions (in the decision space) with the same quality
(objective values) will give the decision maker more options
for consideration.

See the example in the last subsection, Max gets solutions
x∗1,x

∗
2,x
∗
3,x
∗
5,x
∗
7,x
∗
9,x
∗
10 by using an MOEA. He prefers

solution x∗5 (IC1, IC2, and IC5) since its objective values can
perfectly satisfy his requirements. Unfortunately, his supplier
suddenly informs him that IC2 is in short supply because the
cargo is missing. This accident is kind of uncertainty that is
difficult to be captured in the optimization problem in Eq. (2).
Then he cannot adopt solution x∗5 and is upset about that none
of the remaining solutions can meet his requirements. He will
be very happy if the optimizer can provide solution x∗6 (IC3,
IC4, and IC5), which has the same quality with solution x∗5
but does not need IC2. Since in a posteriori situations, the
decision maker’s (e.g. Max’s) preference is given after the
optimization, it will be ideal if the optimizer can provide more
solutions with other objective and decision values (e.g., x∗4 and
x∗8).

Similar situations happen in other practical optimization
problems. For instance, in architecture layout design optimiza-
tion [7], there could be multiple optimal layouts (solutions)
with the same building cost and energy efficiency (objectives).
Since customers have different preferences about the artistic
factors and these preferences are usually implicit [25], de-
signers need to provide various optimal layouts for customer
choices. For another example in a map-based problem [9], the
goal is to find a location simultaneously closest to several
places on a map, such as school, convenience store, and
railway station. Since the aforementioned places are usually
more than one on the map, there may exist several optimal
locations that have the same objective values.

In addition, finding multiple Pareto optimal solutions may
help to reveal hidden properties or relations of the problem
under study, e.g., the distribution of Pareto optimal solutions
in the decision space. This provides much richer information
about the problem domain than regular MOEAs [20].

D. Motivation
Although solving MMMOP has a great significance in real-

world applications, very few researches have been done up to
this date. In the following, we elaborate our motivations in
detail to address the issues in solving MMMOPs mentioned
in Section I.

1) Diversity maintenance both in the objective and the
decision spaces: The first issue is how to maintain diversities
both in the objective and the decision spaces when searching
for the Pareto optimal solutions.

A good diversity in the objective space means uniformity
and wide spread. All the MOEAs mentioned in Subsection
II.A are developed to achieve this goal. Similarly, the diversity
metrics in the objective space are also designed to assess
uniformity and/or spread. For example, Spacing (SP) [13]
measures uniformity, Maximum Spread (MS) [26] measures
spread, while IGD [12] and HV [16] measure both simultane-
ously.

There are also various diversity assessment methods in
the decision space. The diversity metric in [27] is based on
summing the distances from every point to the center-point.
In [28], several diversity metrics were proposed based on
ectropy. These metrics can be applied to guide the search in
evolutionary algorithms to avoid premature convergence and
to escape from local optima [29].

For (single-objective) multi-modal optimization, the goal is
to find all the global and/or local optimal solutions. Maximum
Peak Ratio (MPR) [30] is a very popular diversity metric. This
metric measures not only the objective value of the solutions
but also the number of optimal solutions. The more different
optimal solutions found, the better value of MPR will be.
That is, the diversity in the decision space for multi-modal
optimization is measured by how many optimal solutions (or
solutions very close to them) are found. The distribution of
optimal solutions in the decision space is determined by the
optimization problem. Thus they are not necessarily uniformly
or widely distributed. Therefore, the diversity assessment
methods such as those proposed in [27], [28] would be
improper for multi-modal optimization.

From the above discussions, we can see that the diversities
in the objective and the decision spaces bear different require-
ments. If a uniformly and widely distributed Pareto optimal
solution set in the objective space is not uniformly or widely
distributed in the decision space, or vice versa, we can say
that the diversities in the objective and the decision spaces are
inconsistent. In this situation, we should not maintain diversity
only in the objective or the decision space.

There have been a few diversity maintenance methods for
MMMOPs. DN-NSGA-II proposed in CEC 2016 [5] adopts a
decision space based niching method in the mating selection.
However, it does not simultaneously consider the diversities
in the objective and the decision spaces. Omni-optimizer [4]
calculates the crowding distances of each solution in both the
objective and the decision spaces. For a solution, if either of
its crowding distances is larger than the average value, the
larger one will be assigned as its fitness value; otherwise,
the smaller one will be. Very recently, a multi-objective
particle swarm optimization algorithm using ring topology and
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special crowding distance (MO Ring PSO SCD) [31] was
proposed to handle MMMOPs. The special crowding distance
is a modification of that in Omni-optimizer. The crowding
distance in the objective space of a boundary solution in
Omni-optimizer is infinity, which makes the average crowding
distance of all solutions also infinity. Thus, the crowding
distance in the objective space is unlikely to be larger than
the average value, and the crowding distance in the decision
space plays a more important role in selection. To address
this issue, the crowding distance in the objective space of a
boundary solution in MO Ring PSO SCD is set to 1 and 0 for
minimization and maximization problems, respectively. Both
Omni-optimizer and MO Ring PSO SCD try to promote uni-
formity and spread in the objective and the decision spaces.
However, as we have discussed, uniformity and spread are not
necessary for diversity maintenance in the decision space.

In this study, we first cluster solutions according to a set
of well-distributed reference vectors to improve uniformity
and spread in the objective space. Then, for each cluster, we
employ a niching method to promote diversity in the decision
space. In doing so, we expect to find different Pareto optimal
solutions in the decision space for each cluster center (i.e.,
reference vector). We will describe this method in detail as
the diversity archive method in Subsection III.D.

Another problem of diversity maintenance is the trade-off
between convergence and diversity [32]. It will be difficult to
design a selection criterion to well balance among convergence
performance and diversity performances in the objective and
the decision spaces. Focusing only on one performance may
degenerate the others. In multi-objective optimization, two-
archive methods have been developed to reduce the difficulty
in selection [33]. For example, in many-objective optimization,
since selecting good solutions in a high-dimensional objective
space is a very challenging task, two archives were employed
to focus on convergence and diversity, respectively [34].

Inspired by the works in [33], [34], we propose a novel two-
archive method for solving MMMOPs in this study. In addition
to the diversity archive, a convergence archive is developed
focusing on convergence, which is described in Subsection
III.C. These two archives complement with each other to make
the optimizing work easier during the evolution process. In
addition, they are also designed to obtain good solutions for
the recombination strategy. Please see our explanations in the
next subsection.

2) Reducing population size in particular situations: The
other issue in solving MMMOPs is that maintaining diversities
both in the objective and the decision spaces may require
an extremely large population as well as a huge computa-
tional cost. In this study, we take advantage of independent
convergence-related decision variables to develop a recombi-
nation strategy, which can reduce the population size during
the evolution process.

Recently, the independent convergence-related decision
variables have gained much attention in large-scale multi-
objective evolutionary optimization [35], [36]. There could
exist a number of independent convergence-related decision
variables in MOPs (not necessarily large-scale) [37], [38]. In
[35], [36], a decision variable analysis method is first adopted

to classify the decision variables into convergence-related,
diversity-related, or mixed type and to obtain the interactions
among them. Then, the population is decomposed into several
subpopulations to accelerate the convergence speed.

No matter whether a multi-objective problem is large-scale
or multi-modal, we can apply the decision variable analysis
method to obtain the property of solutions and the relationships
among them. In this study, we exploit this information to
reduce the population size when solving MMMOPs.

Let us first introduce what is an independent convergence-
related decision variable. A decision variable is independent
if it is not interacting with other decision variables [39].
Various interdependence detecting techniques for decision
variables have been developed, e.g., perturbation [40] and
model building, [41]. Please refer to the above literatures for
detailed information.

We have the following definition if and only if all the
decision variables xi ∈ x, i = 1, ..., n are independent with
each other [39]:

arg min
(x1,...,xn)

f(x) = [argmin
x1

f(x), ..., argmin
xn

f(x)] (4)

The above definition suggests that each decision variable can
be optimized separately, and optimal solutions can be finally
obtained by combining the optimized values of the decision
variables.

On the other hand, a decision variable xi is convergence-
related, if changing xi ∈ x can only result in a new solution
which equals to x, dominates x, or is dominated by x [38].
On the contrary, if changing xi ∈ x can only cause a new
solution that is incomparable or equivalent to x, it is diversity-
related. The decision variables which are both convergence-
and diversity-related are called mixed variables. That is, when
changing a mixed variable xi ∈ x, some new solutions are
comparable with x, while the others are incomparable. Please
refer to [35], [36] for detailed information about how to
classify these properties of decision variables.

From the above definitions, we can make the following
inference. For an MOP in Eq. (1), assume that x∗1 and x∗2
are two Pareto optimal solutions and xc is a independent
convergence-related decision variable. If the decision variables
except xc in x∗1 and x∗2 have the same values, x∗1 and x∗2
must be at the same location on the PF, since different values
of xc will not lead to the change of location on the PF.
Then, since their values of xc are different, the MOP is an
MMMOP according to the definition in Subsection II.C. For
a Pareto optimal solution x∗3 at the another location on the
PF, if the value of xc in x∗3 is different from that in x∗1(x∗2),
a new solution x∗4 can be obtained by replacing the value of
xc in x∗3 with that in x∗1(x∗2). Since xc is independent with
other decision variables, x∗4 must be a Pareto optimal solution
according to the definition in Eq. (4). Meanwhile, x∗4 is at
the same location on the PF as x∗3. This means that once we
can get several Pareto optimal solutions at the same location
like x∗1 and x∗2 and some Pareto optimal solutions at the other
locations like x∗3, we can easily generate a large number of
Pareto optimal solutions like x∗4 by the above recombination
operation. Taking a simple example for an easy understanding,
a given MMMOP is formulated as follows:
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Fig. 2. The PF of problem in Eq. (5) in the objective space and PS1 and
PS2 in the decision space.

min f1(x) = x1 + 1− |sin(2πx2)|
min f2(x) = 1− x1 + 1− |sin(2πx2)|
s.t. x1 ∈ [0, 1], x2 ∈ [0, 1]

(5)

Clearly, x1 is diversity-related, x2 is convergence-related,
and they are independent with each other. Assume we have
obtained a PS, PS1, that is well-distributed on the PF,
where PS1 = { (0, 0.25), (0.1, 0.25), (0.2, 0.25), (0.3, 0.25),
(0.4, 0.25), (0.5, 0.25), (0.6, 0.25), (0.7, 0.25), (0.8, 0.25),
(0.9, 0.25), (1, 0.25)}, and we also find that (0, 0.25) and
(0, 0.75) are two Pareto optimal solutions at the same location
on the PF. By replacing the values of x2 with 0.75 in PS1,
we then achieve a new PS, PS2, where PS2 = { (0, 0.75),
(0.1, 0.75), (0.2, 0.75), (0.3, 0.75), (0.4, 0.75), (0.5, 0.75),
(0.6, 0.75), (0.7, 0.75), (0.8, 0.75), (0.9, 0.75), (1, 0.75)}.
Fig. 2 shows PS1 and PS2 in the decision space and
the corresponding PF in the objective space. Pareto optimal
solutions (or solutions very close to them) which have different
independent convergence-related decision variable values are
defined as peak solutions, e.g., (0, 0.25) and (0, 0.75). They
play an important role in the recombination strategy. We will
describe how the recombination strategy works in Subsection
III.E.

Although integrating the above recombination strategy with
existing MOEAs is possible, existing MOEAs may not be able
to find peak solutions efficiently. Therefore, in this paper, the
aforementioned two-archive strategy is particularly designed
to work with the recombination strategy. Besides accelerating
convergence rate, the convergence archive is also designed to
find peak solutions. Meanwhile, the diversity archive aims at
maintaining diversities in the objective space and the remain-
der decision subspace.

For the example in Eq. (5), the convergence archive is
expected to find two peak solutions, (0, 0.25) and (0, 0.75),
while the diversity archive is expected to find PS1 (it contains
eleven solutions). In an ideal situation, their sizes can be set
to 2 and 11, respectively, during the evolution process. Then,
we can get the whole PS (e.g., PS1 ∪PS2) using the recom-
bination strategy at the end of the evolution process. In this
way, we may only need a population which has a similar size
to the archives, but obtain a large number of Pareto optimal
solutions at last. Similarly, for the example in Section I, if
the 20 Pareto optimal solutions for each point on the PF are
peak solutions, we can set the sizes of the convergence and the
diversity archives to 20 and 100, respectively, and then obtain
20 × 100 = 2, 000 Pareto optimal solutions by the recom-

bination strategy. Therefore, if the independent convergence-
related decision variables can be detected, using our proposed
recombination strategy will dramatically reduce the population
size during the evolution process. Some MMMOPs may not
contain independent convergence-related decision variables.
However, if an MMMOP does have such decision variables, it
will gain great convergence and/or computational benefits by
utilizing the recombination strategy. Please refer to Section III
in the Supplementary Material (SM) for the investigation on
the effect of the recombination strategy.

III. THE PROPOSED METHOD

A. A General Framework

Algorithm 1 A General Framework
Require: P (Population), N (Population Size), AC (Con-

vergence Archive), NC (Size of AC), AD (Diversity
Archive), ND (Size of AD)

1: [XIC ,Xre]=Decision Variable Analysis(x)
2: R = Reference Vector Generation(R)
3: P = Initialize(P )
4: AC =Update Convergence Archive(AC , P,NC , XIC)
5: AD = Update Diversity Archive(AD, P,R,ND, Xre)
6: while the stopping criterion is not met do
7: P ′ = Mating selection(AC , AD, pcon)
8: P = Reproduction(P ′)
9: AC =Update Convergence Archive(AC , P,NC , XIC)

10: AD = Update Diversity Archive(AD, P,R,ND, Xre)
11: end while
12: if XIC 6= ∅ then
13: FS = Recombination(AC , AD, XIC)
14: else
15: FS = AD

16: end if
17: return FS

Algorithm 1 presents the overall framework of the proposed
TriMOEA-TA&R for solving MMMOPs. Note that for a
concise description, the MMMOP to be solved is assumed
to be minimized from here. In addition, the objectives and
decision variables are assumed to have the same scale. If not,
they can be normalized according to their lower and upper
bounds.

In Algorithm 1, first, a decision variable analytical technique
is adopted to detect the set of independent convergence-related
decision variables, XIC (line 1). Then, a set of reference
vectors well-scattered in the objective space, R, is generated
to guide the update of the diversity archive (line 2). This
procedure is similar with that of the reference vector based
methods, such as MOEA/D [3]. Next, an initial population,
P , is created by randomly generating N individuals (line 3).
In each generation, the mating selection is performed to choose
parents from the convergence and the diversity archives (AC

and AD) (line 7), where pcon is the probability of selecting
parents from the convergence archive. A larger value of pcon
indicates that the convergence archive plays a more important
role in the evolution process. Please refer to Subsection IV.B
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Fig. 3. The relationships among the evolutionary population, the convergence
archive, the diversity archive and the final solution set in TriMOEA-TA&R.

and IV.C in the SM for the investigation on the effect of
pcon. A tournament selection strategy is adopted in the mating
selection, where solutions with lower rank are favored. The
rank in the convergence and the diversity archives is calculated
as that in line 18, Algorithm 3 and line 1, Algorithm 4,
respectively. Then, offspring are created to form the new
population (line 8). Once a new population is produced, both
AC and AD will be updated based on it (lines 4, 5, 9, and
10). At the end of the evolution, if XIC is not empty, the final
solution set (FS) is generated by recombining solutions in AC

and AD (lines 12 and 13). Otherwise, FS is equal to AD (line
15). Fig. 3 shows the relationships among the evolutionary
population, the convergence archive, the diversity archive and
the final solution set for a better understanding.

In the following, we describe in detail the decision variable
analytical technique, the approaches to updating the conver-
gence and the diversity archives, and the recombination strat-
egy to obtain the final solution set, which are four important
components in TriMOEA-TA&R.

B. Decision Variable Analysis

Algorithm 2 Decision Variable Analysis(x)
1: Convergence&Diversity Analysis(x)
2: Interdependence Analysis(x)
3: XIC = ∅
4: Xre = ∅
5: for all xi ∈ x do
6: if xi is convergence-related then
7: XIC = XIC ∪ {xi}
8: else
9: Xre = Xre ∪ {xi}

10: end if
11: end for
12: while ∃xi ∈ XIC , xj ∈ Xre, xi and xj are interactive do
13: Xre = Xre ∪ {xi}
14: XIC = XIC/{xi}
15: end while
16: return XIC , Xre

Algorithm 2 describes the decision variable analytical
technique used. Function Convergence&Diversity Analysis(x)
classifies the decision variables into convergence-related,
diversity-related, or mixed variables (line 1). Function In-
terdependence Analysis(x) analyzes the interdependence re-
lationship between every two decision variables (line 2). Both
functions are similar with those of [35]. Please refer [35]

for detailed discussions. After getting the properties of the
decision variables and the relationships among them, the
convergence-related decision variables will be selected into
XIC , and the others into Xre (lines 5-10). Then, if there exists
any decision variable in XIC that is interactive with any in
Xre, it will be moved into Xre (lines 12-15). That is, any
decision variable in XIC is independent with every decision
variable in Xre, and vice versa. Based on the definition in
Eq. (4), we can deduct that XIC and Xre can be optimized
separately. This implies that for a Pareto optimal solution,
we can replace its decision variables in XIC (or Xre) with
those of another Pareto optimal solution, and then obtain a
new Pareto optimal solution. We take advantage of this in the
recombination strategy in Subsection III.E.

C. Updating the Convergence Archive

Algorithm 3 Update Convergence Archive(AC , P,NC , XIC)
Require: σniche (niche radius in the variable space)

1: Q = AC ∪ P
2: for all x ∈ Q do
3: fS(x) =

∑M
m=1 fm(x)

M
4: end for
5: for every two solutions xi,xj ∈ Q do
6: d(xi,xj) = Variable Distance (xi,xj , XIC)
7: end for
8: Q′ = ∅
9: AC = ∅

10: nrank = 1
11: while |AC | < NC do
12: if Q = ∅ then
13: Q = Q′

14: Q′ = ∅
15: nrank = nrank + 1;
16: end if
17: xmin = argmin

x∈Q
fS(x)

18: rank(xmin) = nrank
19: AC =AC ∪ {xmin}
20: Q =Q/{xmin}
21: for all xi ∈ Q do
22: if d(xmin,xi) < σniche then
23: Q′ =Q′ ∪ {xi}
24: Q =Q/{xi}
25: end if
26: end for
27: end while
28: return AC

Algorithm 3 gives the approach to updating the convergence
archive. This procedure is similar to our previous proposed
one-by-one selection strategy [42]. The difference is that the
procedure in this study aims at finding multiple Pareto opti-
mal solutions in the independent convergence-related decision
subspace. Our previous study in [42] has shown that the
procedure can well balance the convergence and the diversity
performances. Updating the convergence archive in this study
can be divide into two main steps.
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Main Step 1. Selecting only one solution with the best value of
the convergence indicator (lines 17-20). That is, the solution,
xmin, with the minimum convergence indicator (fS(x)) is
selected from the candidate solution set, Q.
Main Step 2. De-emphasizing solutions closer to the one
selected in the first main step in the independent convergence-
related decision subspace (lines 21-26). In this main step,
the solutions in Q whose distances to xmin are smaller the
threshold, σniche, are de-emphasized and selected into Q′.

The first main step focuses on providing a strong selection
pressure towards the PF using the convergence indicator, while
the second main step aims at improving the diversity in
the independent convergence-related decision subspace. By
repeating the above two steps, the convergence archive is able
to find different Pareto optimal solutions (or solutions very
close to them) in the independent convergence-related decision
subspace. That is, finding multiple Pareto optimal solutions at
the same position on the PF in the convergence archive is
very promising. These solutions are defined as peak solutions,
which are used for the recombination strategy.

In lines 2-4, the convergence indicator of each candidate
solution, fS(x), in Q is calculated by summing the objective
values. Note that any other scalarizing functions can also be
adopted as the convergence indicator. The selection pressure
towards PF is boosted by the convergence indicator instead
of the Pareto dominance even if there are a large number of
objectives.

In lines 5-7, for every two solutions in Q, their distance
in the independent convergence-related decision subspace is
calculated. Any method to calculate the distance can be used.
Here we just simply adopt the Tchebycheff distance in this
study. In the second main step, if the distance between any
solution and the selected one is smaller than σniche, it will be
deleted from Q and selected into Q′ (lines 22-25).

In lines 12-19, once Q is empty, it is reloaded with the
de-emphasized solutions in Q′, and the ranks of solutions
to be selected is increased by 1. Consequently, a solution
that is de-emphasized for more times has a larger rank. The
ranks are used for selecting solutions with good convergence
performance in the mating selection in Algorithm 1.

The guideline of setting σniche in the convergence archive
(also the diversity one) is to effectively distinguish different
Pareto optimal solutions. Generally, the higher dimension
of the decision space and the smaller population size, the
larger value of σniche will be. If σniche is too large, some
Pareto optimal solutions very close to others may be de-
emphasized. Conversely, if σniche is too small, a large number
of solution close to the optimal ones may be preserved in the
archive, which will decrease the ability in finding the true
Pareto optimal solutions. We show an example of how σniche
effects on finding peak solutions and the ranks of solutions in
Subsection IV.A and IV.D in the SM.

Besides, we show the effect of the convergence archive on
converging in Subsection IV.C in the SM.

D. Updating the Diversity Archive
The purpose of the diversity archive is to maintain diversity

in the objective and the remainder decision subspace. Algo-

Algorithm 4 Update Diversity Archive(AD, P,R,ND, Xre)
Require: σniche (niche size in the variable space)

1: F = F1 ∪ F2 ∪ ...Fi =Nondominated rank (AD ∪ P )
2: AD = F1 ∪ F2 ∪ ...Fi−1
3: Q = Fi

4: NQ = ND − |F1 ∪ F2 ∪ ...Fi−1|
5: for all xi ∈ Q, rj ∈ R do
6: θ(xi, rj) = Angle (xi, rj)
7: end for
8: for every two solutions xi,xj ∈ Q do
9: d(xi,xj) = Variable Distance (xi,xj , Xre)

10: end for
11: C1 = C2 = ...C|R| = ∅
12: C ′1 = C ′2 = ...C ′|R| = ∅
13: for all xi ∈ Q do
14: jj = arg min

j=1,2,...,|R|
θ(xi, rj)

15: if ∃xii ∈ Cjj , d(xi,xii) < σniche then
16: C ′jj = C ′jj ∪ {xi}
17: else
18: Cjj = Cjj ∪ {xi}
19: end if
20: end for
21: while |C1 ∪ C2 ∪ ...C|R|| > NQ do
22: cmax = max

j=1,2,...,|R|
|Cj |

23: xmax = arg max
xi∈Cj ,|Cj |=cmax

θ(xi, rj)

24: Cj = Cj/{xmax}
25: end while
26: while |C1 ∪ C2 ∪ ...C|R|| < NQ do
27: cmin = min

C′j 6=∅,j=1,2,...,|R|
|Cj |

28: xmin = arg min
xi∈C′j ,|Cj |=cmin

θ(xi, rj)

29: Cj = Cj ∪ {xmin}
30: end while
31: AD = AD ∪ C1 ∪ C2 ∪ ...C|R|
32: return AD

rithm 4 presents the approach in updating the diversity archive,
which has four main steps.
Main Step 1. De-emphasizing the dominated solutions (lines
1-4). The nondominated ranking [1] is performed on the
set combined by AD and P to form several nondominated
fronts (line 1), where i in Fi is the minimal value such that
|F1|+|F2|+...|Fi| > ND. Note that the result of nondominated
ranking is also used for the mating selection in Algorithm 1.
The first i−1 nondominated fronts are combined to form AD

(line 2). Then, the candidate solutions set, Q, is set to Fi (line
3), and the number of solutions that remain to be selected,
NQ, is set to ND − |F1 ∪ F2 ∪ ...Fi−1| (line 4).
Main Step 2. Clustering the candidate solutions into a set
of well-distributed reference vectors (i.e. clustering centers)
in the objective space (lines 11-20). That is, the solutions
in Q are clustered into Cj , j = 1, ..., |R| according to their
angels (calculated in lines 5-7) to the closest reference vector,
rj , j = 1, ..., |R|. The purpose of this main step is to improve
the diversity in the objective space.
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Main Step 3. De-emphasizing similar solutions in the remain-
der decision subspace (lines 15-16). When clustering solutions
to each reference vector in the second main step, after finding
the closest rjj for the solution, xi, if there exists any solution
in Cjj whose distance to xi (calculated in lines 8-10) is
smaller than σniche, xi will be de-emphasized and chosen
into C ′jj . This niche-based clearing procedure is similar to
the second main step in the convergence archive. The design
goal of this main step is to improve diversity in the remainder
decision subspace.
Main Step 4. Making the number of selected solutions equal
to NQ (lines 21-30). If the total number of solutions in
Cj , j = 1, ..., |R| is larger than NQ, the solution farthest
away from its cluster center (rj) among the largest Cj will
be discarded (lines 21-25). Otherwise, if the total number of
solutions in Cj , j = 1, ..., |R| is smaller than NQ, the solution
closest to its cluster center (rj) in C ′j will be added into the
smallest Cj (lines 26-30). This main step is designed to further
promote the diversity performance in the objective space.

According to Algorithm 4, the diversity in the objective
space is ensured by the clustering solutions in terms of the
reference vectors. Meanwhile, the diversity in the decision
space is promoted using the niche-based clearing procedure.
Therefore, the diversity archive has the ability in maintaining
diversities both in the objective and the decision spaces.

E. Obtaining Final Solution Set

Algorithm 5 Recombination(AC , AD, XIC)
Require: εpeak (accuracy level)

1: xmin = arg min
x∈AC

fS(x)

2: Apeak = {x : fS(x)− fS(xmin) < εpeak,x is in the first
rank in AC}

3: FS = ∅
4: for all xi ∈ Apeak, i = 1, ..., |Apeak| do
5: for all xj ∈ AD, j = 1, ..., ND do
6: xl = 0n

7: for k = 1 to n do
8: if xk ∈ XIC then
9: xk,l = xk,i

10: else
11: xk,l = xk,j
12: end if
13: end for
14: FS = FS ∪ {xl}
15: end for
16: end for
17: return FS

At the end of the evolution, if XIC is empty, the final
solution set is equal to the diversity archive. Otherwise, a
recombination strategy is performed to generate the final
solution set, which is presented in Algorithm 5. We define
the Pareto optimal solutions (or solutions very close to them)
which have different independent convergence-related decision
variable values as peak solutions in this study. In Algorithm
5, an accuracy level [43], εpeak, is required to distinguish the

peak solutions in AC . First, xmin is set to the solution with the
smallest value of convergence indicator in AC (line 1). Then, if
the difference of the convergence indicator between a solution
in the first rank in AC and xmin is smaller than the accuracy
level, it will be regarded as a peak solution and placed into
Apeak (line 2). Next, for each solution xi in Apeak and each
solution xj in AD, a new solution xl is created and added
into P (lines 4-16). When creating xl, if the k-th decision
variable belongs to XIC , xk,l will be set to xk,i (lines 8-9).
Otherwise, it will be set to xk,j (line 11). As aforementioned
in Subsection III.B, the decision variables in XIC and Xre can
be optimized separately, which suggests that if both xi and xj

are Pareto optimal solutions, xl is certainly a Pareto optimal
solution. Using this recombination strategy, a solution set with
satisfactory convergence and diversities both in the objective
and the decision spaces can be obtained. In addition, the size of
the final solution set is |Apeak|×ND, whereas only NA+ND

solutions are required to be maintained during the evolution.
This implies that if the given MMMOP has a lot of peak
solutions, TriMOEA-TA&R will have a significant advantage
in computational efficiency due to the small population size.
Please also refer to the computational complexity analysis of
TriMOEA-TA&R in Section VI in the SM.

IV. EXPERIMENTAL DESIGN

This section describes the experimental design for exam-
ining the performance of the proposed TriMOEA-TA&R.
The test problems and the performance metric used in the
experiments are given at first. Then, the parameters are set for
the comparative studies of the test problems and the competing
algorithms.

A. Test Problems

Since multi-modal multi-objective optimization is a rel-
atively new research area, to our best knowledge, either
benchmark test functions or mathematical models from real
world applications are very few. In [4], [5], [31], several multi-
modal multi-objective test problems were proposed. However,
they are non-scalable and some of them are relatively easy for
a well-developed optimizer.

This subsection introduces the novel multi-modal multi-
objective benchmark test functions, i.e., MMMOP1-6, pro-
posed in this paper. These benchmarks are developed from
the most popular multi-modal (CEC 2013 [43], CEC 2015
[44]) and multi-objective (CEC2009 [45], DLTZ [37]) bench-
marks. All these test functions are scalable. For these test
functions, the following notations are used. M is the num-
ber of objectives. n is the number of decision variables.
XA = {xM , xM+1, ..., xM+kA−1}, and |XA| = kA. XB =
{xM+kA

, xM+kA+1, ..., xn}, and |XA| = kB . n = M − 1 +
kA + kB . Please refer to Tables I and II in the SM for the
common properties and the detailed definitions of MMMOP1-
6, respectively. Figs. 1-7 in the SM show the PFs and PSs of
these problems.

The characteristics of these test functions are summarized
as follows.
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1) MMMOP1: MMMOP1 is a relatively simple optimiza-
tion problem to test an optimizer’s ability in finding multiple
Pareto optimal solutions. It is developed from “Equal Maxima”
and “DLTZ1.” DTLZ1 has numerous local Pareto optimal
solutions. However, in this study, we only consider solving an
MMMOP by finding multiple global Pareto optimal solutions
for a point on the PF. Therefore, Equal Maxima is combined
with DLTZ1 to construct MMMOP1. It has 5kA Pareto opti-
mal solutions which have different independent convergence-
related decison variable values for each point on its PF.

2) MMMOP2: MMMOP2 is originated from “Vincent” and
“DLTZ4.” It has two distinct features. The first is that it has
bias in the decision space. Therefore, it is difficult for an
optimizer in maintaining diversities both in the objective and
the decision spaces. The second is that the Pareto optimal
solutions have vastly different spacing between them. This
further increases the difficulty in preserving all of them. MM-
MOP2 has 6kA Pareto optimal solutions which have different
independent convergence-related decison variable values for
each point on its PF.

3) MMMOP3: The building blocks of MMMOP3 are from
“Rastrigin” and “DLTZ2.” Different from MMMOP1 and
MMMOP2, there are multiple Pareto optimal solutions which
have different diversity- and/or convergence-related decision
variable values for a point on the PF of MMMOP3. Another
feature of MMMOP3 is that the number of Pareto optimal
solutions for a point on its PF can be controlled by the user,
which is

∏
i=M,...,M+kA−1 ci ×

∏
i=1,...,M−1 di. di > 0 and

ci > 1 are the parameters defined by the user.
4) MMMOP4: MMMOP4 is similar with MMMOP3. How-

ever, the significant feature of MMMOP4 is that the points
on the Pareto front correspond to various numbers of Pareto
optimal solutions. In addition, MMMOP4 has numerous local
optima by incorporating the building blocks of “DLTZ3.”

5) MMMOP5: MMMOP5 is also similar with MMMOP3.
The main difference between MMMOP5 and MMMOP3 is
that the Pareto opitmal regions in MMMOP5 have different
densities. In addition, like MMMOP4, MMMOP5 also has
numerous local optima.

6) MMMOP6: MMMOP6 is developed from “Himmel-
blau” and “UF8.” It has convergence-related and mixed de-
cision variables, where some convergence-related decision
variables are interactive with the mixed ones. In addition,
for every two decision variables in XA, there are four Pareto
opitmal solutions for a point on the PF, where two solutions are
much closer to each other than the other two. In MMMOP6,
there exist 4kA/2 ×

∏
i=M+kA,...,n ci Pareto optimal solutions

for each point on the Pareto front, where ci > 0 is a design
parameter.

In addition, we also include MMF1-8 in [31] as test prob-
lems in the experiments.

B. Performance Metric
Like the test problems, building a proper metric to evaluate

the performance of an optimizer is another issue in multi-
modal multi-objective optimization. In [5], IGDX [46] is
suggested to assess the performance of a multi-modal multi-
objective optimizer. IGDX is a variant of IGD, where X

symbolizes decision variables. IGDX uses a set of uniformly-
distributed reference points on the PS in the decision space
instead of that on the PF in the objective space in IGD. It
also calculates the distance between the reference point set
and the solution set in the decision space other than that
in the objective space. However, as discussed in Subsection
II.D, maintaining diversities in the objective and the decision
spaces are not the same task. For the optimization problems
such as MMMOP2 and MMMOP5, finding solutions well-
distributed in the decision space does not imply that a well-
distributed PF would be obtained. Moreover, a solution closer
to the PS than others is not necessarily closer to the PF
than others. Consequently, IGDX is not a very good metric
for multi-modal multi-objective optimization. IGD is also not
applicable since it cannot measure diversity in the decision
space. Recently, the Pareto Sets Proximity (PSP) is proposed
in [31]. It is composed of IGDX and Cover Rate (CR). CR
can only measure the spread of a solution set in the decision
space. Therefore, PSP still has the same issue as IGDX.

In this study, we propose a novel metric, Inverted Gen-
erational Distance-Multi-modal (IGDM), to assess the per-
formance of a multi-modal multi-objective optimizer. IGDM
functions like combining IGD with MPR. It can measure
not only the convergence performance but also the diversity
performances both in the objective and the decision spaces.
A solution set that is more uniformly and widely distributed
in the objective space would have a smaller IGDM value. In
addition, for a given PF, the more diversified Pareto optimal
solutions (or solutions very close to them) found in the
decision space, the smaller IGDM value will be.

Let F ∗ : {f∗1 ,f∗2 , ...., f∗q } be the set of well distributed ref-
erence points (in the objective space) on the PF, where q is the
number of reference points. Let A be {a1, a2, ...., aq}, where
ai, i = 1, 2, ..., q is the number of Pareto optimal solutions
to each point, f∗i . Let X∗ : {x∗1,1,x∗1,2,x∗1,a1

,x∗2,1, ...,x
∗
q,aq
}

be the set of Pareto optimal solutions (in the decision space)
corresponding to F ∗ and A. Let P : {x1,x2, ...,xp} be the
approximate solution set obtained by an optimizer, where p is
the number of the obtained solutions. Metric IGDM is defined
as follows:

IGDM(P, F ∗, X∗) =

∑
f∗
i
∈F∗

∑
j=1,...,ai

d(f∗i ,x
∗
i,j ,P )

|X∗|

d(f∗i ,x
∗
i,j , P ) =

{
dmax, if Pi,j = ∅
min{dmax, ed(f

∗
i , Pi,j)}, else

Pi,j = {xk : j = argminl=1,...,ai
ed(x∗i,l,xk),xk ∈ P}

(6)
where ed(f∗i , Pi,j) is the minimal Euclidean distance between
f∗i and Pi,j , ed(x∗i,l,xk) is the Euclidean distance between
x∗i,l and xk, and dmax is a parameter defined by the user.

The relations and distinctions between IGDM and IGD are
as follows:

(1) In addition to a reference set of uniformly distributed
points, F ∗, along the PF in the objective space, IGDM has
another reference set, X∗, which contains Pareto optimal
solutions in the decision space corresponding to each points
in F ∗.

(2) In IGDM, d(f∗i ,x
∗
i,j , P ), i.e., the distance between a

point, f∗i , and the approximate solution set, P , is calculated
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multiple times according to the number of the Pareto optimal
solutions, i.e., ai, while the distance is calculated only once
in IGD.

(3) In IGDM, when calculating d(f∗i ,x
∗
i,j , P ), the solutions

in P is first clustered into several subset based on their
distances to the reference solutions in X∗ in the decision
space. Only solutions in the corresponding subset, i.e., Pi,j ,
are adopted to calculated d(f∗i ,x

∗
i,j , P ).

(4) IGDM has a new parameter, dmax. dmax is a penalty
value set by the user. When calculating d(f∗i ,x

∗
i,j , P ), if the

corresponding subset is empty, d(f∗i ,x
∗
i,j , P ) is set to dmax.

In addition, if the corresponding subset is not empty, but
ed(f∗i , Pi,j) is larger than dmax, it is also set to dmax.

(5) IGDM is an extension of IGD. Conversely, IGD is a
special case of IGDM. When all ai = 1, i = 1, ..., q and
dmax =∞, IGDM is equal to IGD. This relationship is similar
with that between MMMOPs and MOPs, where MMMOPs are
MOPs extended with multi-modal properties.

Please note the following points when using IGDM.
The first is that setting dmax to a proper value is non-trivial.

If dmax is too large, the performance of an optimizer will be
penalized too much for any Pareto optimal solution not found.
On the other hand, if dmax is too small, it will be difficult to
distinguish the differences among optimizers. According to
our preliminary investigations, for the optimization problems
whose PF is in the range of [0, 1], dmax is recommended
to be set as 1. For other optimization problems, their PFs
and the approximate solution set can be normalized into the
range of [0, 1]. Under this setting, the value of IGDM is
in the range of [0, 1]. A small value of IGDM indicates a
good overall performance of the approximate solution set.
Particularly, IGDM = 0 suggests that the approximate solution
set is uniformly distributed on the PF, and all the Pareto
solutions are found. IGDM = 1 implies that the approximate
solution set has a poor performance, and the distance between
any solution in it and the PF is larger than 1. The user would
have less interest in comparing two approximate solution sets
whose IGDM = 1, since they are not even converged.

Secondly, IGDM is a composite metric to simultaneously
measure the qualities of an approximate solution set in the
following three aspects: convergence, diversity in the objective
space, and diversity in the decision space. This implies that
one approximate solution set that is good in one quality
but poor in the others may have the same IGDM value as
another approximate solution set that is poor in the particular
quality but good in the others. This is similar to metric HV
[16] that multiple approximate solution sets could result into
the same, or similar, HV value given different convergence
and diversity qualities in the objective space. Therefore, if
the user expects to measure only one or two qualities of
an approximate solution set, GD [12], SP [13], and other
metrics are recommended. However, if the user wants to
comprehensively quantify an approximate solution set, IGDM
is a good choice.

At last, the value of IGDM depends on the reference points
sampled on the PF and the PS (i.e., F ∗ and X∗), since different
choices of reference points generally result in different IGDM
values of an approximate solution set. It may be difficult to use

TABLE I
THE PARAMETER SETTINGS OF THE TEST PROBLEMS AND THE
CORRESPONDING PARAMETER SETTINGS OF THE COMPARED

ALGORITHMS.

 

M n kA kB All c i All d i N N oth

MMMOP1-A 2 3 1 1 \ \ 100 500

MMMOP1-B 3 7 1 4 \ \ 120 600

MMMOP2-A 2 3 1 1 \ \ 100 600

MMMOP2-B 3 7 1 4 \ \ 120 720

MMMOP3-A 2 2 0 1 \ 3 300 300

MMMOP3-B 3 7 0 5 \ 2 480 480

MMMOP3-C 2 6 1 4 3 3 300 900

MMMOP3-D 3 7 1 4 2 2 480 960

MMMOP4-A 2 2 0 1 \ 4 300 300

MMMOP4-B 3 7 0 5 \ 3 480 480

MMMOP4-C 2 6 1 4 2 4 300 600

MMMOP4-D 3 7 1 4 2 3 480 960

MMMOP5-A 2 2 0 1 \ 3 400 400

MMMOP5-B 3 7 0 5 \ 1 480 480

MMMOP5-C 2 6 1 4 2 2 300 600

MMMOP5-D 3 7 1 4 2 1 480 960

MMMOP6-A 2 2 0 1 2 \ 200 200

MMMOP6-B 3 3 0 2 2 \ 480 480

MMMOP6-C 2 4 2 1 2 \ 200 400

MMMOP6-D 3 5 2 1 2 \ 480 960

IGDM for some real-world MMMOPs due to their unknown
or complex true PFs and/or PSs. That is, IGDM has the same
issue as IGD and IGDX. One possible way to address this
issue is to adopt non-dominated solutions found so far as the
reference points. In this study, all the PFs and PSs of the test
problems are known. We set the size of F ∗ to 1, 000 and
1, 653 for 2- and 3-objective test problems in the experiments,
respectively, while the size of X∗ is dependent on the test
problems.

C. Competing Algorithms

In the experiments, two algorithms are chosen for compar-
ison to assess the performance of the proposed TriMOEA-
TA&R.

The first algorithm is MO Ring PSO SCD proposed in
[31]. It adopts a particle swarm algorithm with ring topology
for searching. Moreover, a special crowding distance is devel-
oped to maintain diversities both in the objective and decision
spaces.

The second algorithm is DN-NSGA-II presented in [5]. It
has a similar environmental selection strategy with NSGA-II.
Besides, it uses a decision space based niching method in the
mating selection, which is particularly designed for solving
MMMOPs.

D. Parameter Settings

This section gives the parameter settings of the test problems
and the competing algorithms.

In the experiments, 28 test problems are adopted. Table I
lists the parameter settings of MMMOP1-6 and the corre-
sponding parameter settings of the competing algorithms.
These test problems have various features and difficulty levels
due to different parameter settings. Generally, if a test problem
has a larger number of objectives (M ), decision variables (n)
or Pareto optimal solutions in the decision space (controlled
by kA, kB , ci, and di), it is more difficult to solve. For
example, the PF and PS of MMMOP3-D are more difficult
to achieve than those of MMMOP3-A. In both MMMOP1
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and MMMOP2, there are multiple Pareto optimal solutions
which have different independent convergence-related decision
variable values for each point on the PF. However, MMMOP2
is more difficult for an optimizer to maintain diversity in
the decision space than MMMOP1. In the A and B types
of MMMOP3, MMMOP4 and MMMOP5, there are multiple
Pareto optimal solutions which only have different diversity-
related decision variable values for each point on the PF.
Thus, the effect of our proposed recombination strategy may
be unapparent on them. The C and D types of MMMOP3,
MMMOP4 and MMMOP5 have more Pareto optimal solutions
in the decision space than the A and B types. Besides, the PSs
of MMMOP4 and MMMOP5 are more complex than that of
MMMOP3 according to Subsection IV.A. Hence, they would
be more difficult to solve than MMMOP3. In MMMOP6, there
are multiple Pareto optimal solutions which have different
convergence-related decision variable values for each point on
the PF. However, all the convergence-related decision variables
in the A and B types of MMMOP6 are interactive with
the mixed decision variables. This will make our proposed
recombination strategy inactive.

In the test problems where multiple Pareto optimal solutions
with different independent convergence-related decision vari-
able values exist for each point on the PF, the population size
of TriMOEA-TA&R (N in Table II) is smaller than that of the
other algorithms (Noth in Table II), since a large population
is not necessary during the evolution. For a fair comparison
by IGDM, Noth is set no less than the final solution set of
TriMOEA-TA&R. The termination criterion of all compared
algorithms is the predefined maximum number of generations.
We set the maximum number of generations to 500 for
MMMOP1-6 to guarantee that all algorithms can converge.
Note that for all the competing algorithms, the population
size and the maximum number of generations are set to 800
and 100, respectively, for solving MMF1-8 according to the
original study [31].

The other common parameters adopted by all competing
algorithms are set as follows. Simulated binary crossover and
polynomial mutation are used as the crossover and mutation
operators, with both distribution indexes being set to 20.
The crossover and mutation probabilities are 1.0 and 1/n,
respectively, where n is the number of decision variables.

The systematic approache [3] is adopted to generate refer-
ence vectors in TriMOEA-TA&R, where the divisions in each
dimension is set 99 and 14 for 2-objective and 3-objective test
problems, respectively.

In TriMOEA-TA&R, if εpeak is set too small, it will be
difficult to find all the peak solutions. On the contrary, if εpeak
is set too large, a large number of fake peak solutions (i.e.
solutions far away from the PF) could be found. Although the
true peak solutions can also be found, the final solution set
will be extremely huge. This actually does not have obvious
effect on the performance of TriMOEA-TA&R. However, the
size of the final solution set of TriMOEA-TA&R will be huge,
and the other competing algorithms will struggle to maintain
a population in a similar size. Based on our preliminary
investigation, we set εpeak 0.01. Under this setting, fake peak
solutions are hardly found.

TABLE II
RESULTS OF IGDM

 

MMMOP1-A 4.200E-03 5.483E-01 + 5.122E-01 +

MMMOP1-B 7.961E-02 5.982E-01 + 5.645E-01 +

MMMOP2-A 1.377E-01 4.901E-01 + 5.733E-01 +

MMMOP2-B 3.732E-01 5.837E-01 + 6.386E-01 +

MMMOP3-A 5.125E-03 5.355E-03 = 5.276E-03 =

MMMOP3-B 5.411E-02 6.977E-02 + 7.332E-02 +

MMMOP3-C 1.718E-02 4.678E-01 + 3.308E-01 +

MMMOP3-D 5.865E-02 1.432E-01 + 9.866E-02 +

MMMOP4-A 5.311E-03 5.407E-03 = 5.453E-03 =

MMMOP4-B 6.022E-02 8.322E-02 + 8.272E-02 +

MMMOP4-C 3.251E-02 4.870E-01 + 4.809E-01 +

MMMOP4-D 5.833E-02 4.504E-01 + 4.045E-01 +

MMMOP5-A 4.925E-03 9.724E-03 + 9.075E-03 +

MMMOP5-B 5.325E-02 7.544E-02 + 8.770E-02 +

MMMOP5-C 1.076E-01 4.734E-01 + 4.528E-01 +

MMMOP5-D 5.250E-02 4.473E-01 + 3.871E-01 +

MMMOP6-A 7.036E-03 1.264E-02 + 1.190E-02 +

MMMOP6-B 9.043E-02 9.586E-02 = 1.047E-01 +

MMMOP6-C 2.544E-01 6.997E-01 + 7.112E-01 +

MMMOP6-D 1.347E-01 5.938E-01 + 6.328E-01 +

Sumup of MMMOP + \ - \ =

MMF1 2.331E-03 2.337E-03 = 2.791E-03 +

MMF2 1.241E-02 1.144E-02 = 2.065E-02 =

MMF3 3.290E-02 3.037E-02 = 4.112E-02 +

MMF4 2.531E-01 2.532E-01 = 2.567E-01 +

MMF5 4.329E-03 4.443E-03 = 1.606E-02 +

MMF6 4.105E-03 4.390E-03 + 1.553E-02 +

MMF7 1.890E-03 2.215E-03 + 2.285E-03 +

MMF8 3.261E-01 3.078E-01 - 3.319E-01 =

Sumup of MMF + \ - \ =

Sumup of All + \ - \ =

IGDM

19 \ 1 \ 8 24 \0 \ 4

TriMOEA-

TA&R

MO_Ring_

PSO_SCD
DN-NSGA-II

17 \ 0 \ 3 18 \ 0 \ 2

2 \ 1 \ 5 6 \ 0 \ 2

In TriMOEA-TA&R, the sizes of the convergence and the
diversity archives are equal to the population size. σniche
is set to 0.05 for MMMOP2-A, 0.3 for MMMOP4-D and
MMMOP5-D, and 0.1 for the other test problems. If XIC

is detected to be empty, pcon is set to 0.2, otherwise it is set
to 0.5. Please refer to Section IV in the SM for the sensitivity
analyses of σniche and pcon.

In MO Ring PSO SCD, both C1 and C2 are set to 2.05
and W is set to 0.7298 according to the original study [31].

In DN-NSGA-II, the Crowding Factor (CF) is set to half of
the population size as the authors recommend [5].

Each algorithm is run for 30 times on each test instance,
and the mean values of IGDM are calculated. In addition, the
Wilcoxon’s rank sum test is employed to determine whether
one algorithm has a statistically significant difference with
the other on IGDM, and the null hypothesis is rejected at
a significant level of 0.05.

V. RESULTS AND DISCUSSIONS

In this section, the performance of TriMOEA-TA&R is em-
pirically evaluated by comparing it with MO Ring PSO SCD
[31] and DN-NSGA-II [5]. Tables II shows the mean values
of IGDM obtained by different algorithms. ‘+’ (‘−’) indi-
cates that TriMOEA-TA&R shows significantly better (worse)
performance in the comparison. ‘=’ indicates that there is
no significant difference between the compared results. We
also present the achieved solution sets of some representative
instances in the decision space by these algorithms in a given
single run to visually investigate their performance in Figs.
8-13 in the SM. From Table II and Figs. 8-13 in the SM, we
have the following observations.

For MMMOP1, TriMOEA-TA&R significantly outperforms
the other algorithms according to the results of IGDM.
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MO Ring PSO SCD and DN-NSGA-II do not achieve sat-
isfactory results. We observe that TriMOEA-TA&R works
very well in most runs. However, it fails to identify every
peak solution in the convergence archive in a few runs on
MMMOP1-B due to the huge search space, which results in
undesirable performance. From Fig. 8 (a) in the SM, we can
see that TriMOEA-TA&R reaches all the parts of PS. The
solutions obtained by MO Ring PSO SCD and DN-NSGA-
II in Fig.8 (b) and (c) in the SM almost concentrate on a single
line, but they also find several solutions on other lines.

For MMMOP2, TriMOEA-TA&R is the best one among
these competing optimizers. However, it can be seen from Fig.
9 (a) in the SM that the solutions on the bottom line are very
difficult to achieve. As we have discussed in Subsection III.C,
when σniche is large, a peak solution very close to another
one is likely to be de-emphasized. Conversely, if σniche is
small, the efficiency of searching peak solutions will be very
low in the high-dimensional decision space. Therefore, missing
peak solutions may reduce the TriMOEA-TA&R’s ability in
obtaining all the parts of PS. From Fig. 9 (b) in the SM,
we can see that although most of the solutions obtained by
MO Ring PSO SCD concentrate on one line, they are denser
on the line as x1 increases, since MO Ring PSO SCD tries
to maintain diversities both in the objective and the decision
spaces. This is why MO Ring PSO SCD outperforms DN-
NSGA-II on MMMOP2 according to the mean values of
IGDM.

TriMOEA-TA&R achieves the best mean value of IGDM
on MMMOP3. MO Ring PSO SCD and DN-NSGA-II per-
form well on MMMOP3 except the C type, and there is
no significant difference between TriMOEA-TA&R and them
on MMMOP3-A. We can see from Fig. 10 in the SM, the
solutions obtained by TriMOEA-TA&R seem more uniformly
distributed than those obtained by MO Ring PSO SCD and
DN-NSGA-II. This may indicate that the diversity mainte-
nance strategy in TriMOEA-TA&R performs better than the
crowding distance methods in MO Ring PSO SCD and DN-
NSGA-II.

The PS of MMMOP4 has the same geometrical shape
with that of MMMOP3 in the decision space, whereas the
number of Pareto optimal solutions varies in terms of the
position of the PF in the objective space. Due to this feature,
most of the mean values of IGDM obtained by each com-
peting algorithm on MMMOP4 are a bit larger than those on
MMMOP3. TriMOEA-TA&R performs best on MMMOP4.
However, there is no significant difference between the results
obtained by the competing algorithms on MMMOP4-A. From
Fig. 11 (a) in the SM, we can see that TriMOEA-TA&R
can obtain a diverse Pareto optimal solution set both in the
convergence- (x3) and diversity-related (x1 and x2) decision
spaces.

TriMOEA-TA&R performs significantly better than the
others on MMMOP5. From Fig. 12, we can see that the
solutions obtained by TriMOEA-TA&R are clearly denser
when x1 > 0.67 and x2 > 0.67. MO Ring PSO SCD and
DN-NSGA-II behave similarly as that in MMMOP3. This
indicates that they cannot make a distinction among the Pareto
optimal regions with different densities. Therefore, the mean

value obtained by MO Ring PSO SCD and DN-NSGA-II on
MMMOP5 are not good as those in MMMOP3.

For MMMOP6, TriMOEA-TA&R achieves the best per-
formance among these algorithms. Note that MMMOP6-A
and -B do not have any independent convergence-related
decision variable, the recombination strategy in TriMOEA-
TA&R is inactive. However, the mean values of IGDM ob-
tained by TriMOEA-TA&R are the best among the com-
peting algorithms. It can be seen from Fig. 13 in the SM
that most of the solutions obtained by TriMOEA-TA&R,
MO Ring PSO SCD and DN-NSGA-II are distributed well
in each Pareto optimal region.

All the MMF test problems have two decision variables
which have interactions with each other. Therefore, the re-
combination strategy in TriMOEA-TA&R is inactive like that
on MMMOP6-A and -B. Even so, thanks to the two-archive
strategy, TriMOEA-TA&R achieves five best mean IGDM
values on MMF test problems, and it significantly outperforms
MO Ring PSO SCD on MMF6 and MMF7 and DN-NSGA-
II on MMF1 and MMF3-7. However, TriMOEA-TA&R shows
significantly worse performance than MO Ring PSO SCD on
MMF8. The reason is that for some points on the PF of MMF8,
the distances among Pareto optimal solutions in the decision
space are extremely small, which results in the failure of
TriMOEA-TA&R in distinguishing them. In addition, although
there is no significant difference between the results obtained
by TriMOEA-TA&R and MO Ring PSO SCD on MMF2 and
MMF3, TriMOEA-TA&R receives worse mean IGDM values.
We found that TriMOEA-TA&R can maintain a good diversity
in the objective space on MMF2 and MMF3; however, some
small parts of the PSs are missing. The possible reason is
that the diversity archive in TriMOEA-TA&R first tries to
promote diversity in the objective space and then does that
in the decision space. Relatively insufficient search efforts in
the decision space may result in the missing parts. Further
balancing diversities in the objective and the decision spaces is
an interesting improvement for TriMOEA-TA&R in our future
work.

According the above observations, we can draw the follow-
ing conclusions: (1) TriMOEA-TA&R outperforms the other
algorithms on most test problems. For the test problems which
contain independent convergence-related decision variables,
e.g., MMMOP test problems expect MMMOP6-A and -B,
TriMOEA-TA&R can gain great convergence and/or compu-
tational benefits from the recombination strategy. Reader can
refer to Section III in the SM for the further investigation
on the effect of the recombination strategy. On the other
hand, owing to the two-archive strategy, TriMOEA-TA&R also
works very well for the test problems with no independent
convergence-related decision variable, e.g., MMMOP6-A and
-B and MMF1-7. (2) MO Ring PSO SCD and DN-NSGA-
II can achieve encouraging results on some relatively simple
test problems, e.g., MMMOP3-A, MMMOP4-A, and MMFs.
Although they both employ the crowding distance method
to maintain diversity in the decision space, they may fail to
locate some Pareto optimal solutions, e.g., A and B types
of MMMOP1 and MMMOP2, C and D types of MMMOP3,
MMMOP4, MMMOP5, and MMMOP6.
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In the SM, we also show the PSP results obtained by the
competing algorithms and discuss the difference between PSP
and IGDM by an example in Section V. Readers can refer to
them if interested.

VI. CONCLUSION

In this paper, we have proposed a novel multi-modal multi-
objective evolutionary algorithm using two-archive and recom-
bination strategies, termed TriMOEA-TA&R. In the proposed
method, the independent convergence-related decision vari-
ables are detected by a decision variable analytical technique at
first, which will help to find multiple Pareto optimal solutions.
A general framework of two archives, i.e., the convergence
and the diversity archives, is proposed to cooperatively solve
MMMOPs. The division of labor in the two archives reduces
the difficulties in the environmental selection procedure. In
addition, the recombination strategy can reduce the size of
population under particular conditions.

We have also proposed a set of benchmark test functions,
i.e., MMMOP1-6, and a performance metric, i.e., IGDM, for
multi-modal multi-objective optimization. This will encourage
more interests in this new research area in the Evolutionary
Computation community. In this study, they are also adopted
to demonstrate the effectiveness of TriMOEA-TA&R by com-
paring it with MO Ring PSO SCD and DN-NSGA-II. The
experimental results of IGDM demonstrate that TriMOEA-
TA&R is the best among the compared algorithms on most
test problems.

In this study, since our purpose is to establish a general
framework to solve MMMOPs, some specific strategies can
be further developed and employed in TriMOEA-TA&R. For
example, the niching methods in the decision space is a
basic clearing strategy. For some problems in which the
multiple Pareto optimal solutions have vastly different spac-
ing between them (e.g., MMMOP2 and MMF8), this basic
clearing strategy may not find all Pareto optimal solutions.
An advanced strategy to adaptively tune the niche size or
without niche parameters can be developed for TriMOEA-
TA&R in the future work. Similarly, a strategy to adaptively
generate reference vectors during the evolution process can be
employed for TriMOEA-TA&R to solve the MMMOPs with
complex PFs.

In addition, it can be seen from the experiments that the
compared algorithms may struggle to achieve good perfor-
mance as the dimension of the decision space increases. On
the other hand, the increasing number of objectives can pose a
great challenge in the “curse of dimensionality.” Investigating
and improving TriMOEA-TA&R on solving MMMOPs with
a large number of both objectives and decision variables is
certainly interesting for our future research.

*The source codes of TriMOEA-TA&R, MMMOP1-6, and IGDM is
available on https://github.com/yiping0liu.
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