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Abstract

Many-objective optimization problems are common in real-world applications, few evolutionary optimization methods, however,
are suitable for solving them up to date due to their difficulties. A reference points-based evolutionary algorithm (RPEA) was
proposed in this paper to solve many-objective optimization problems. The aim of this study is to exploit the potential of the
reference points-based approach to strengthen the selection pressure towards the Pareto front while maintaining an extensive and
uniform distribution among solutions. In RPEA, a series of reference points with good performances in convergence and distribu-
tion are continuously generated according to the current population to guide the evolution. Furthermore, superior individuals are
selected based on the evaluation of each individual by calculating the distances between the reference points and the individual in
the objective space. The proposed algorithm was applied to seven benchmark optimization problems and compared with ε-MOEA,
HypE, MOEA/D and NSGA-III. The results empirically show that the proposed algorithm has a good adaptability to problems
with irregular or degenerate Pareto fronts, whereas the other reference points-based algorithms do not. Moreover, it outperforms
the other four in 8 out of 21 test instances, demonstrating that it has an advantage in obtaining a Pareto optimal set with good
performances.
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Keywords: Evolutionary optimization; multi-objective optimization; many-objective optimization; reference point; distance.

1. Instruction

Various optimization problems with multiple objectives commonly exist in real-world applications, e.g., water
management [1], software development [2], and industrial scheduling [3]. Their common characteristics are that
they contain more than one objective and there exist some conflicts among these objectives, indicating that there is
no solution which is optimal for all objectives. They are termed as multi-objective optimization problems (MOP).
Problems with more than three objectives are defined as many-objective optimization problems (MaOP). Without loss
of generality, the MOP considered in this study is formulated as follows:

min f (x) = ( f1 (x) , f2 (x) , ..., fM (x))
s.t.x ∈ S ⊂ Rn (1)
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Where x represents an n-dimensional decision variable in space S . fm(x),m = 1, 2, ...M is the m-th objective to be
minimized, and M is the number of objectives. When M > 3, this problem is a MaOP.

Over the past two decades, a large number of multi-objective evolutionary algorithms (MOEAs), e.g., nondomi-
nated sorting genetic algorithm II (NSGA-II) [4], strength Pareto evolutionary algorithm 2 (SPEA2) [5] and multiob-
jective particle swarm optimization (MOPSO)[6], have been proposed. MOEAs usually work very well on two- or
three- objective problems. However, they noticeably deteriorate their search ability when solving MaOPs, due to the
following serious difficulties [7]:
(1) The Pareto dominance-based selection pressure toward the Pareto front sharply decreases as the number of objec-
tives increases. Almost all solutions in a population are non-dominated when the number of objectives is large. This
makes the Pareto-based selection fail to distinguish individuals.
(2) Exponential increase in the number of solutions is required for approximating the entire Pareto front. Since the
Pareto front is a hyper-surface in the high-dimensional objective space, thousands of non-dominated solutions may be
required to approximate the entire Pareto front of a MaOP.
(3) The visualization of obtained non-dominated solutions is difficult due to the large number of objectives. Conse-
quently, it could be difficult for a decision maker to choose a final solution in many-objective optimization.
Given the above difficulties, seeking for new methods to effectively solve MaOPs is of considerable necessity. In this
paper, we focus on solving the first difficulty by establishing a novel evolutionary algorithm based on reference points.

Reference points have been employed to guide the evolution in many situations. On account of the evaluation of
individuals by the distances between reference points and them, the selection pressure of superior individuals will not
lose in many-objective optimization. Most preference-based MOEAs usually adopt only one reference point to search
solutions in the objective sub-spaces of interest to a decision maker [8, 9, 10]. Intuitively, adopting a series of reference
points to obtain the whole Pareto front has the potential in solving MaOPs. For example, both [11] and [12] generate
multiple reference points uniformly distributed on a hyperplane to guide solutions to converge. However, the positions
of these reference points are predefined in these methods, whereas the true Pareto front of a practical optimization
problem is usually unknown beforehand. The mismatches between the reference points and the true Pareto front may
degrade the search ability of the algorithms. Therefore, if appropriate reference points can be continuously generated
during the evolution according to information provided by the current population, it will be of great possibility to
achieve a solution set with good performances.

In view of this, a reference points-based evolutionary algorithm (RPEA) was proposed in this study. During
the evolution, a series of reference points with good performances in convergence and distribution are adaptively
generated according to the current population. Then, by minimizing the distances between the reference points and
the individuals, superior individuals are selected in the environment selection process. Some preliminary results of
this study were presented in [13], where a number of reference points are generated in terms of the parent individuals,
and the distance between an individual and each of the reference point is evaluated by a modified Euclidean distance.
In this study, we extended the methodology and proposed the following new features:
(1) The proposed algorithm is generalized to a common framework.
(2) Only the non-dominated individuals in the parent and the offspring populations are chosen to generate the reference
points, thus further enhancing the performances of these reference points.
(3) An achievement function based on the Tchebychev distance is adopted instead of the modified Euclidean distance,
to efficiently evaluate the candidates.
(4) The behavior of RPEA with different parameter settings is empirically investigated.
(5) RPEA is compared with three other state-of-the-art MOEAs, i.e., ε-MOEA, MOEA/D and NSGA-III, on more
benchmark optimization problems.

This study has the following contributions: (1) presenting an approach to generating reference points which are
adaptive to optimization problems; (2) proposing a method of selecting superior individuals based on the distances
between reference points and individuals.

The remainder of this paper is organized as follows. Section 2 reviews the related work. The proposed approach,
RPEA, is described in Section 3. Section 4 presents the benchmark MaOPs, performance metrics, and the algorithm
settings used in performance comparison. The experiment results and analysis are given in Section 5. Finally, Section
6 concludes this paper and offers suggestions on possible opportunities for future research.
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2. Related Work

2.1. Multi-objective Evolutionary Optimization

Formula (1) describes different types of optimization problems in case of different values of M. When the value
of M is larger than one, formula (1) represents a MOP. In such a scenario, the optimization objectives usually conflict
with each other, i.e., improvements on one objective will cause deterioration on the other objectives, which indicates
that it is impossible to find one optimal solution that meets all the objectives. Then, a set of solutions that have a good
tradeoff among all objectives may be more desirable.

In multi-objective optimization, the following concepts have been well defined and widely applied.
Pareto Dominance: for any two different solutions of formula (1), x1, x2 ∈ S , if ∀m = 1, 2, ...,M, fm (x1) ≤

fm (x2), and ∃i = 1, 2, ...,M, fi (x1) < fi (x2), then x1 dominates x2, denoted as x1 � x2.
Pareto optimal set: for a solution of formula (1), x∗ ∈ S , if there is no x′ ∈ S satisfying x′ � x∗ , then x∗ is termed

as the Pareto optimal solution. All such solutions form into a set which is often called Pareto optimal solution set.
Pareto front: the image of Pareto optimal solution set on the objective space is known as the Pareto front.
MOEAs are powerful for solving MOPs. Among existing popular MOEAs, NSGA-II [4] is more highlighted. In

NSGA-II, different levels of non-domination, obtained by employing a fast non-dominated sorting approach based
on the Pareto dominance comparison to the union set of parent and offspring populations, is used to evaluate an
individual. In addition, the crowding distance is considered if more than one solution belongs to the same front.
Thus, the individuals with good convergence and distribution are reserved to the next generation. Besides NSGA-II,
there are other outstanding MOEAs, e.g., SPEA2 [5]. In SPEA2, the fitness of an individual is calculated based on
the Pareto dominance. Then the density of the individual is obtained by the k-th nearest neighbor method so as to
maintain a fixed population size.

2.2. Many-objective Evolutionary Optimization

The Pareto-based MOEAs mentioned above are efficient for problems with no more than three objectives. When
the number of objectives is larger than three, these methods may also be applied to solve them. However, their
performance will be greatly impaired along with the increase of the objectives, or even cannot find a Pareto optimal
set [14]. Therefore, it is of considerable necessity to explore novel methods for solving MaOPs.

Under the framework of Pareto-based MOEAs, developing new dominance relations to compare individuals so
as to maintain enough selection pressure is the best for MaOPs. Up to date, several new dominance concepts, e.g.,
ε-domimance [15], the electre-tri method [16], grid-based dominance [17], have been well studied and applied. These
new dominance relations can finely compare different individuals. However, they may also cause the population to
converge to a sub-region of the Pareto optimal front [18].

Objective reduction is an effective alternative method for solving MaOPs. In such a case, the dimensionality of
objectives is first reduced, and the traditional Pareto dominance is then adopted to evaluate an individual. Popular
methods include: optimization on partial objectives [19], redundant objectives deletion [20], and objectives weighting
[21]. Recently, de Freitas et al. [22] proposed the aggregation tree technique, which can be used for not only objective
reduction but also visualization. By using the above methods, a reduced set of objectives is the subset of the original
set, which indicates that if the number of objectives is very large, the reduced set may also contain more than three
objectives.

Using an indicator function to measure the quality of a solution set is a theoretically well-supported alternative
to the traditional Pareto dominance. This kind of MOEA is referred to as an indicator-based evolutionary algorithm
(IBEA) [23]. Since hypervolume is strictly monotonic with regard to the Pareto dominance, it has been a widely used
indicator in IBEA. However, its computation complexity increases exponentially along with the number of objectives,
which inhibits the full exploitation of its potential. HypE [24] uses a Monte Carlo simulation to approximate the
exact hypervolume values, by which the accuracy of the estimates can be trade off against the computing resources
available. This makes HypE very competitive for solving MaOPs.

The aggregation approach is another perspective alternative to the traditional Pareto dominance. In this approach,
the objectives of an MOP (MaOP) are aggregated into a scalar. The diversity of a population is maintained by
specifying a set of well-distributed weight vectors to guide the individuals to simultaneously search towards different
directions. The most representative MOEAs based on this concept are MSOPS [25] and MOEA/D [26] which are
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considered as important approaches for solving MaOPs. Recently, Dai and Wang [27] combined MOEA/D with
CDAS [28] to improve their performances on MaOPs. Yuan et al. [29] proposed a new way to balancing convergence
and diversity in MOEA/D.

The set-based MOEA developed for MaOPs have been focused on, and several outstanding studies have been
attained. Bader et al. [30] proposed a set-based MOEA, in which the evolutionary population contains some sets of
solutions with the same size, and then the hypervolume indicator is adopted to assess the performance of those sets.
Under such a framework, the original MaOP is transformed into a single-objective optimization problem. The goal of
the MOEA is to obtain a Pareto optimal set satisfying some indicators, e.g., hypervolume, diversity or spread. From
this point, Zitzler et al. [31] advocated that the optimization process of an MOEA is essentially to find an optimal set
rather than to find some solutions, and thus proposed the indicator-guided set-based optimization framework. Gong
et al. [32] presented a set-based Pareto dominance relation and designed a fitness function reflecting the decision
maker’s preference to effectively solve MaOPs.

Very recently, more many-objective optimizer based on shift-based density estimation [33], knee point [34], and
meta-objective method [35] are proposed, which are of great potentials in solving MaOPs.

2.3. Reference Points-based Evolutionary Optimization
Existing reference points-based approaches usually adopt only one reference point to represent the decision

maker’s ideal solution. Wierzbicki [8] suggested a reference point approach in which the goal is to achieve a Pareto
optimal solution closest to a supplied reference point of aspiration level based on solving an achievement scalarize
problem. Deb et al. [9] introduced the decision maker’s preference to find a preferred set of solutions near the refer-
ence point. Mohammadi et al. [10] combined decomposition strategies with reference point approaches to search for
preferred regions.

Up to date, there is only a few researches on achieving the whole Pareto optimal solution set by employing
multiple reference points. In [36], the reference points were generated by estimating the bounds of the Pareto front,
and solutions near each reference point could be obtained in parallel. Although this priori method is very convenient,
the reference points may be not appropriate at later evolution process. Wang et al. [37] proposed a co-evolution method
to simultaneously optimize solutions and reference points during evolution, but the fitness value of an individual is also
calculated by the traditional Pareto dominance. In the method proposed by Deb and Jain [11], a hyperplane covering
the whole objective space is obtained based on the current population, and a family of well-distributed reference
points are generated on the hyperplane. In practice, the Pareto fronts of most optimization problems are not uniformly
distributed in the whole objective space, and it is necessary to adopt reference points which are adaptive to various
problems.

In the approach proposed in this study, with the purpose of obtaining the whole Pareto front, a series of reference
points suitable for different problems are continuously generated based on the current population; moreover, the
selection pressure in many-objective optimization is improved by calculating the distances between these reference
points and individuals.

3. Proposed Method

3.1. General framework
Algorithm 1 gives a general framework of the proposed RPEA. Its basic procedure is similar to most generational

EMOs. First, an initial population, P(t) , is formed by randomly generating N individuals. Then, genetic operators
are performed to obtain an offspring population, P′(t). Next, a set of reference points, R, is generated based on
the combined population, Q(t), every tgrp generations. Finally, N best solutions are selected based on the reference
points for survival. It can be seen that there are two key operators in RPEA: generation of reference points (line
7) and selection of individuals (line 9). In this study, reference points with good performances in convergence and
distribution are generated by making full use of information provided by the current population. In addition, superior
individuals are selected based on the evaluation of each individual by calculating the distances between the reference
points and the individual in the objective space. In the following two subsections, the above key operators will be
illustrated in detail.

1A%B denotes the remainder when A is divided by B, where both A and B are integers.
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Algorithm 1 Reference Points-based Evolutionary Algorithm
Input: MaOP (1);

a stopping criterion;
the population size, N;
the number of iterations, tgrp, to determine whether the reference points are
generated or not.

Output: the final non-dominated solution set, FNS.
1: Set t = 0;
2: Initialize a population, P (t) = {x1, x2, ..., xN}, by a random or problem-specific method;
3: while the stopping criterion is not met do
4: Perform genetic operators on P(t) so as to generate an offspring population, P′(t) , with the same size as P(t);
5: Let Q (t) = P (t) ∪ P′ (t);
6: if t%tgrp = 01 then
7: Generate a series of reference points, R = {r1, r2, ..., rN}, based on Q(t);
8: end if
9: Select individuals from Q(t) based on R and form P(t + 1);

10: t = t + 1;
11: end while
12: Select non-dominated solutions in P(t) and form FNS;
13: Output FNS.

3.2. Generation of Reference Points
In this subsection, the concept of reference point was first presented; a method of generating reference points with

good performances in convergence and distribution was then proposed.

3.2.1. Concept of Reference Point
Broadly speaking, the reference point is a point in the objective space that guides the evolution. There are two

typical types of reference points, i.e., ideal point and nadir point, where the objective function value(s) of an ideal
point is (are) not inferior to the best objective function value(s) of the given solutions. On the contrary, the objective
function value(s) of a nadir point is (are) not superior to the worst objective function value(s) of the given solutions.
Clearly, the closer an individual is to an ideal point and the farther it from a nadir point, the better convergence
performance the individual has.

For a point in the objective space, if its value(s) is (are) not inferior to that (those) of a part of the known solutions,
it is termed as a local ideal point. For instance, when solving the problem represented as formula (1) with a MOEA,
rl =

(
rl

1, rl
2, ...rl

m, ..., rl
M
)

is a local ideal point, when rl
m is

rm
l = min

x∈Pl
fm (x) − εm,m = 1, 2, ...,M (2)

where Pl is a subset of the current population. εm is either zero or an arbitrarily small positive. In particular, the local
ideal point

rl = ( f1 (x) , ..., fm (x) − εm, ..., fM (x)) (3)

must not be inferior to solution x.
For a point in the objective space, if its value(s) is (are) not inferior to that (those) of all the known solutions, it is

termed as a global ideal point. If
rm

g = min
x∈Pg

fm (x) − εm,m = 1, 2, ...,M (4)

where Pg is the current population, rg =
(
r1

g, rg
2, ...rg

m, ..., rg
M
)

is a global ideal point.
A illustration example of local and global ideal points is given in Figure 1, where {x1, x2, x3, x4, x5, x6} is the

current population. rl1 is a local ideal point for the subset {x2, x3, x4}, where both ε1 and ε2 are positive. rl2 is a local
ideal point for the solution x5, where ε1 = 0 and ε2 > 0. rg is a global ideal point, where both ε1 and ε2 are set to 0.
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Figure 1. Local and Global Ideal Points.

Similarly, a local nadir point and a global nadir point can also be defined. It is worth noting that a local ideal
point can become a local nadir point, and vice versa. A reference point may be a local ideal point for some solutions;
however, it may be a local nadir point for other more optimal solutions, and vice versa.

3.2.2. Generation of Reference Points
If only one reference point is adopted to guide the evolution, the whole Pareto front of a problem can be hardly

obtained. Whereas it is relatively easy to obtain the whole Pareto front, when a series of reference points are adopted.
In this study, a series of reference points with good performances in convergence and distribution are generated by
making full use of information provided by the current population. These reference points are assumed as the ideal
population to be obtained in the following iterations. Intuitively, compared to searching for a new solution superior
to an obtained solution in several objectives, it is easier to find a solution better in just one objective. In view of this,
formula (3) is adopted to generate reference points in this study, and εm is set as δ

(
f max
m − f min

m

)
, where δ ∈ (0, 1)

is a parameter, f max
m and f min

m are the maximal and minimal values of the m-th objective, respectively, in the current
population.

In the earlier work [13], based on formula (3), the reference points are generated in terms of all the parent in-
dividuals of the current generation, i.e., P(t). However, there exit several dominated individuals in P(t) despite the
considerably low probability in the high-dimensional space. The reference points generated by these dominated in-
dividuals may degrade the search performance of the algorithm. In addition, some new regions explored by the
offsprings are not assigned to reference points. Consequently, information may be lost during the evolution. In this
study, only the non-dominated individuals in the combined population, Q(t), are chosen to generate the reference
points, thus resolving the above issues.

In terms of formula (3) and Q(t), there will exist at most 2MN reference points with a better performance in
convergence than the individuals in the current population. However, they may not have a good performance in
distribution. The number of reference points generated was limited to N in this study. If all the 2MN possible
reference points have been generated, selecting N well-distributed ones from them will demand a high computation
complexity, due to the large number of objectives.

On account of this, a method with less computation complexity for generating reference points was proposed in
this subsection, whose ideas are as follows. All the non-dominated individuals in Q(t) are first sorted based on the
crowding distances in each dimensional objective space, and dαNe

(
α ∈

[
1
M , 1

])
individuals with the largest crowding

distances are then chosen to generate reference points by reducing the corresponding objective values according to
formula (3). Finally, based on the crowding distances in the original high-dimensional objective space, NR (NR ≤ N)
non-dominated reference points with good performance in distribution are selected. The detailed procedure is given
in Algorithm 2.
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Algorithm 2 Generation of Reference Points
Input: Q(t), δ, α.
Output: R =

{
r1, r2, ..., rNR

}
.

1: Set RΣ = ∅;
2: Form the non-dominated individuals in Q(t) into Q′(t);
3: for m = 1→ M do
4: Sort the individuals in Q′(t) based on the crowding distances in the m-th dimensional objective space;
5: Select dαNe individuals with the largest crowding distances;
6: According to formula (3), set εm = δ

(
f max
m − f min

m

)
, then generate reference points based on these selected

individuals, and form set Rm;
7: Let RΣ = RΣ ∪ Rm;
8: end for
9: Form the non-dominated reference points in RΣ into R;

10: if |R| > N then
11: Delete |R| − N reference points with the smallest crowding distances in M-dimensional objective space in R;
12: end if
13: Output R.

x1

x2

x4

x3

x5
x6

r1
r2

r3

r4

r7
r8

r5

r6

f1

f20

Figure 2. Generation reference points based on the current population.
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Figure 2 shows an example of generating reference points, where the current population is {x1, x2, x3, x4, x5, x6}.
First, since x3 is dominated, only the other five solutions will be used for generating reference points. Then, for
f1, x1, x2, x4, x6 are chosen for their large crowding distances, and the reference points, r2, r3, r5, r8, are accordingly
generated. Similarly, r1, r4, r6, r7 are generated for f2. Next, r3 is eliminated since it is dominated by the other
reference points. Finally, assuming we only need six reference points, r1, r2, r4, r5, r6, r8 are output as the reference
point set, due to their large crowding distances in the bi-objective space. It can be seen from this example that the
final reference set have better performance the the current population.

3.3. Selection of Individuals
As stated previously, the evaluation of an individual is based on the distance from reference points. In this sub-

section, several reference points-based approaches for evaluating individuals were first presented, and the method of
selecting superior individuals was then given.

3.3.1. Evaluation of individuals
(1) Euclidean approach [9]
In this approach, the performance of an individual, xi, is evaluated by the weighted Euclidean distance measure,

de
i j, which is described as follows:

de
i j =

√√√ M∑
m=1

ωm

 fm (xi) − rm
j

f max
m − f min

m

2

(5)

where rm
j represents the m-th objective value of the j-th reference point, r j, in R, f max

m and f min
m mean the maximal and

minimal values of m-th objective in the population. In addition, ωm = 1/M refers to a weight value emphasizing each
objective equally.

For the reference point, r j, a superior individual is supposed as the one with the smallest de
i j, which is appropriate

when the reference point is an ideal point. However, for other individuals with better convergence, the reference
point could be a nadir one, and the smaller de

i j these individuals have, the worse they are. Therefore, this Euclidean
distance measure does not work well. In [13], if an individual dominates the reference point, the negative value of the
Euclidean distance is used to evaluated it. However, it is not efficient enough to select superior individuals.
(2) Tchebychev approach [26]

The achievement function based on Tchebychev distance is defined as follows:

dc
i j = max

m=1,2,...,M
ωm

 fm (xi) − rm
j

f max
m − f min

m

 (6)

where dc
i j represents the Tchebychev approach between xi and the reference point, r j. If x1 dominates x2, dc

1 j will be
smaller than dc

2 j. Hence, the individual with the smallest dc
i j will be superior no matter whether the reference point is

an ideal point or not. Moreover, a small value of dc
i j also indicates that solution xi may have a good performance in

distribution since this solution is close to the reference point which is well-distributed.
It is worth noting that other reference points-based approaches for evaluating individuals in the literature can also

be used in our algorithm framework. Since the main purpose of this study is to investigate the feasibility and efficiency
of the algorithm framework, the Tchebychev approach is only adopted in the experiments.

3.3.2. Selection of Individuals
The approach for selecting individuals is described as follows. First, the distances between the individuals and

the reference points represented as formula (6) are calculated to evaluate the individuals. Then, for each reference
point, the individual with the smallest distance from the reference point is selected to constitute the new population.
In addition, if an individual is the best with respect to several reference points, it can be selected only once, in
order to increase the diversity of the population. The above approach is similar to that in [13]. Since given the fact
that the number of reference points may be smaller than the population size, all reference points are available again
for selecting the rest individuals, after each reference point is assigned to an individual. The detailed procedure of
selecting individuals is given in Algorithm 3. Through this method, the new population has better performances in
convergence and distribution than the old. As a result, the Pareto optimal set of the problem can be obtained along
with the population’s evolution.
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Algorithm 3 Selection of Individuals
Input: the reference points, R =

{
r1, r2, ..., rNR

}
;

the candidate solution set, P′ (t) = {x1, x2, ..., x2N}.
Output: the new population, P(t + 1).

1: Let P (t + 1) = ∅, R′ = ∅;
2: for all xi in P′ (t) do
3: for all r j in R do
4: Calculate the value of dc

i j;
5: end for
6: end for
7: while |P (t + 1)| < N do
8: if R = ∅ then
9: R = R′;

10: R′ = ∅;
11: end if
12: Seek for the reference point, r jmin , in R and the individual, ximin , in P′(t) with respond to the smallest value of

dc
i j, dc

imin jmin
;

13: Let P (t + 1) = P (t + 1) ∪
{
ximin

}
;

14: Delete ximin from P′(t);
15: Let R′ = R′ ∪

{
r jmin

}
;

16: Delete r jmin from R;
17: end while;
18: Output P(t + 1).

3.4. Computational Complexity Analysis
The main difference between RPEA and traditional EMOs is its environment selection strategy which requires to

generate a series of reference points. The computational complexity analysis is provided in this subsection.
For the population size of N and an optimization problem with M objectives, when α = 1

M , our method of gener-
ating reference points has the lowest computation complexity, represented as O

(
MN log N

)
. Whereas, the complexity

of selecting N well-distributed reference points from 2MN possible ones is O
(
M2N log (MN)

)
, much larger than the

proposed method.
The computation of all distances between the current population and the reference points requires at most O

(
MN2

)
operations. Given the worst situation, when selecting individuals based on these distances, every individual will be
checked for the smallest distance, which makes the complexity of O

(
N2

)
.

When α = 1
M , the overall complexity of RPEA is O

(
MN2

)
, which is equal to that of state-of-the-art EMOs, e.g.,

NSGA-II [4], indicating that the algorithm is computationally efficient. However, if α is set to a larger value, RPEA
will have a higher computational complexity.

3.5. Comparison with Previous Methods
From the above subsections, the main loop of RPEA can be summarized into the following three steps: generating

new individuals, generating reference points, and selecting superior individuals. From this viewpoint, most previous
reference points-based methods can be classified into this framework.

With respect to the number of reference points, most previous studies generate only one reference point, and regard
it as an ideal solution that the decision maker expects to obtain. In the method proposed by [8], the decision maker is
required to provide a reference point each time, based on the most preferred individual in the current population. The
location of the reference point guides the algorithm to focus on a specific region of the Pareto front, and seek for a
single Pareto-optimal solution tradeoff objectives. Although there are other methods that utilize two or more reference
points [9, 10], they focus on multiple interest regions on the Pareto front. However, in REPA, all individuals in the
current population can be regarded as the ones preferred by the decision maker, then a series of reference points can
be generated to guide the algorithm to focus on the whole Pareto front, and seek for a Pareto optimal solution set.
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Table 1. Characteristics of test problem and parameter settings in ε-MOEA, where the value of ε corresponds to the number of objectives of a
problem.

Problem M n Characteristics ε in ε-MOEA
DTLZ1 6, 8, 15 M+4 Linear, Multimodal 0.055, 0.056, 0.60
DTLZ2 6, 8, 15 M+9 Concave 0.23, 0.29, 0.31
DTLZ3 6, 8, 15 M+9 Concave, Multimodal 0.23, 0.15, 0.92
DTLZ4 6, 8, 15 M+9 Concave, Biased 0.23, 0.29, 0.31
DTLZ5 6, 8, 15 M+9 Concave, Degenerate 0.11, 0.13, 0.15
DTLZ6 6, 8, 15 M+9 Concave, Degenerate, Biased 0.75, 1.15, 1.95
DTLZ7 6, 8, 15 M+19 Mixed, Disconnected, Multimodal 0.15, 0.23, 0.85

It is of necessity to generate different reference points at different stages, since the true Pareto front of an optimiza-
tion problem in real-world application is often unknown in advance. By estimating the bound of each objective, [36]
generated reference points to depict the Pareto front. This method has a small amount of calculation since the refer-
ence points are generated only once in the beginning of the algorithm. Nevertheless, these fixed reference points may
not suitable for different stages of the evolution. [11] adopted reference points distributed uniformly in the whole ob-
jective space, whereas the Pareto front of a practice problem may be not. Wang et al. [37] proposed a co-evolutionary
method to simultaneously optimize solutions and reference points, so that the reference points can adapt to the prob-
lem. In RPEA, the reference points are also continuously generated to provide up-to-date information of the Pareto
front. However, this advantage comes at the cost of a high calculation. It can be seen from subsection 3.4 that, the
computation cost will be considerably high as the number of objectives and the population size increase.

In general, the proposed algorithm provides a new way to continuously generating multiple reference points suit-
able for various problems, and is promising to obtain the whole true Pareto front.

4. Experimental Design

This section is devoted to the experimental design for investigating the performance of RPEA. The test problems
and performance metrics used in the experiments are first given. Then four state-of-the-art MOEAs, ε-MOEA [15],
MOEA/D [26], HypE [24], and NSGA-III [11], which are used to compare with the proposed algorithm, are briefly
introduced. Finally, the commonly used parameters are set for comparative studies of these algorithms.

4.1. Test Problems and Performance Metrics

DTLZ [38], a well-defined test problem suite, is selected in this study. DTLZ is a continuous problem suite
that can be scaled to any number of objectives and decision variables, and is commonly used in many-objective
optimization. The DTLZ suite is composed of several problems with various characteristics, such as linear, concave,
multimodal, disconnected, biased, or degenerate Pareto fronts. These characteristics are summarized in Table 1. A
detailed description of the DTLZ suite can be found in [38].

In order to measure the performance of different algorithms on these test problems, the inverted generation distance
(IGD) [39], a widely used quality metrics, is chosen in this paper. IGD can measure both the convergence and the
diversity of a solution set, and the smaller the value of IGD, the better the performance of the algorithm. Since
IGD requires a reference set of optimal solutions, which are uniformly distributed on the Pareto optimal fronts of
test problems, we set the number of reference points to around 5000, 5000 , and 10000 when M is 6, 8, and 15,
respectively.

Additionally, two other metrics, generation distance (GD) and spacing (SP) [40], are adopted to measure various
performances of RPEA with different parameter settings. GD evaluates the convergence of a solution set. When GD
is 0, all solutions will lie in the true Pareto front. For SP, it evaluates the uniformity of a solution set. When SP is 0,
the solution set will be uniformly distributed.
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Table 2. Settings of α and δ in RPEA and the population size, where p1 and p2 are parameters controlling the number of reference points (vectors)
in NSGA-III and MOEA/D

M p1 p2 N α δ

6 4 1 132 0.4 0.05
8 3 2 156 0.4 0.1
15 2 1 135 0.2 0.15

4.2. Four Comparative Algorithms

Four state-of-the-art MOEAs were chosen as comparative algorithms to evaluate the performances of the proposed
RPEA:

(1) ε-MOEA [15] is a steady-state algorithm using the ε-dominance relationship, and it has been found to perform
well on MaOPs. Having divided the objective space into a number of hyperboxes with the size of ε, ε-MOEA assigns
each hyperbox at most one solution on the basis of ε-dominance among hyperboxes and Pareto dominance within a
hyperbox. This ε-dominance implementation is very similar to our proposed method for generating reference points.
Hence, it is meaningful to compare RPEA with ε-MOEA.

(2) MOEA/D [26] is an aggregation-based algorithm, which is suitable for tackling MaOPs. In fact, when using
reference vectors to convert the problem into a series of scalar optimization problems, MOEA/D can also be regarded
as a reference points-based algorithm. The main difference between MOEA/D and RPEA is that, MOEA/D adopts
only one reference point and a number of reference vectors, whereas RPEA adopts a number of reference points and
only one reference vector. Therefore, MOEA/D is also chosen as a peer algorithm.

(3) HypE [24] is an indicator-based algorithm, using the hypervolume metric to guide the search. HypE adopts
the Monte Carlo simulation to approximate the exact hypervolume value, significantly reducing the time spent in
calculating hypervolume, which makes it very competitive in many-objective optimization. Although HypE has no
similarities with RPEA, it is helpful to evaluate the proposed method by comparing with it.

(4) NSGA-III [11] was obtained by improving its former version, NSGA-II, for handling MaOPs. NSGA-III uses
a reference points-based selection criterion instead of the density-based counterpart in the original NSGA-II. These
reference points are uniformly distributed on a hyperplane and applied for the maintenance of population diversity. It
is quite necessary to compare RPEA with this typical reference points-based algorithm.

4.3. Parameter Settings

There are three types of parameters in the experiments.
The first is the parameters of evolutionary operators. The evolutionary and selection operators are two key com-

ponents in a MOEA. The former generates new solutions, and the latter selects good ones among them. What makes
the comparative MOEAs different is in fact their different selection operators. To compare the effectiveness of these
selection operators, the compared MOEAs should have the same capability in generating solutions. Therefore, the pa-
rameters of evolutionary operators are required to be same for all the comparative MOEAs. In this study, the operators
for crossover and mutation are simulated binary crossover and polynomial mutation with both distribution indexes of
20. The crossover and mutation probabilities are 1.0 and 1/n , respectively.

The second is the parameters related to the computational consumption, i.e., the population size and the number
of evaluations of solutions. If a comparative MOEA is given more computational resource than the others, the com-
parison will be unfair. Therefore, these parameters should also be set the same values. In NSGA-III and MOEA/D,
to avoid all the generated reference points (vectors) being located along the boundary of the Pareto optimal front for
a problem with a large number of objectives, the strategy of two-layered reference points (vectors) is used, thus the
population size of these two algorithms cannot be arbitrarily specified. As a result, we set the population size of the
other algorithms to the same value as those of NSGA-III and MOEA/D. The setting of the population size, N, and
the parameters for controlling the number of reference points (vectors) are listed in Table 2. In addition, since the
population size is determined by the value of ε in ε-MOEA, we also adjust the value of ε to different problems (shown
in Table 1). The termination criterion is that the number of evaluations reaches to the predefined one. For DTLZ1,
DTLZ3 and DTLZ6, it is set N × 1000, and for DTLZ2, DTLZ4, DTLZ5, and DTLZ7, N × 300.
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Figure 3. Metric SP and time consumption of different methods in generating reference points.

The third is the unique parameters in each MOEA. In RPEA, the smallest distance between the individual and the
reference points is employed as the tournament strategy in mating selection; tgrp is set to 1 so that the reference points
can be generated in each iteration and the proposed method can have good performances; the settings of α and δ are
shown in Table 2. For the unique parameters in the other algorithms, we set them by following the guidelines provided
in their original studies to achieve the best performances of these algorithms. In MOEA/D, the Tchebychev approach
is selected as the scalarizing method, and the neighborhood size is set to N × 0.1 as suggested in [41]. Following the
practice in [24], in HypE, the number of sampling points to estimate hypervolume is set to 10000 in order to trade off

the accuracy of the estimates and the available computing resources.
Each algorithm runs 20 times on each optimization problem, and the mean values and variances of each metric

described in subsection 4.2 are calculated. In addition, the Wilcoxon’s rank sum test is employed to determine whether
one algorithm has a significant difference with the other on a metric, and the null hypothesis is rejected at a significant
level of 0.05.

5. Experimental Results and Analysis

In this section, the performances of RPEA are investigated according to the experimental design described in the
previous section. The experiments are divided into the following two parts. The first investigates the effects of two
parameters for generating references points in the proposed algorithm, and the second compares RPEA with the other
four state-of-the-art MOEAs.

5.1. Studies of Different Parameter Settings in RPEA

5.1.1. Effect of Parameter α
In this subsection, the effect of parameter α on the distribution of references points is investigated. In ten-

dimensional objective space, 100 points are randomly generated and their values were in the range of [0,1]. These
points are assumed to be the individuals of a population in the objective space. Along with the value of α changing
from 0.1 to 1.0 with the step size of 0.1, metric SP of the reference points and the time consumption of generating
them by the proposed method are investigated. In addition, metric SP and the time consumption obtained by the
random method are also investigated as a contrast. Figure 1 depicts metric SP and the time consumption of different
methods in generating reference points, where α = 0 represents the random method. The left Y-axis is metric SP, and
the right Y-axis is time consumption in seconds.

Figure 3 reports that, (1) the curve of SP is steep in the beginning, but flat when α > 0.5, suggesting that increasing
α contributes to the distribution of the reference points, but as α becomes larger, the effect is less significant; (2) as α
increases, the time consumption increases, and the speed of increasing is rapid as well, which means that a large value
of α can substantially increase the time consumption in generating the reference points; (3) the time consumption of
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the random method is almost 0, but a large value of SP indicates a poor distribution of reference points. Therefore, to
balance the distribution performance of reference points and the time consumption, we suggest to set α between 0.2
to 0.6 in RPEA.

5.1.2. Effect of Parameter δ
The essential parameter, δ, determines the performance of the reference points generated based on the current

population, so the performances of RPEA. In this subsection, the effect of δ is investigated by tackling 6-objective
DTLZ2. It is worth noting that similar results can be obtained for the other test cases. Figures 4 and 5 depict the
curves of GD and IGD with respect to the number of generations when δ is set 0, 0.01, 0.05, and 0.1, respectively.

Figures 4 and 5 report that, (1) the larger δ is, the more rapidly GD decreases, suggesting that a large value of δ
is beneficial to improve the efficiency of the evolution; (2) In the first 50 generations, the IGD value obtained by the
method with a large value of δ also declines fast, contributed by the good convergence; (3) After about 50 generations,
the curves of IGD become flat. Then, the method with δ = 0.05 achieves the best IGD value in the end. This indicates
that a large value of δ may also count against the distribution performance and a proper value of δ is conducive to
balance convergence and diversity. (4) when δ = 0, the reference points are actually the individuals in the current
population. In this case, the population can hardly converge towards the Pareto front driven by itself, verifying that the
local ideal points are necessary to be adopted for guiding evolution. To conclude, δ should be set to a proper positive
value to achieve a good overall performance.
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5.2. Comparison to Other Methods

In this section, the proposed method, RPEA, was compared with ε-MOEA, MOEA/D, HypE, and NSGA-III.
Table 3 shows metric IGD in terms of the mean and standard deviation obtained by different algorithms on the DTLZ
problem suite, where DTLZA-B refers to DTLZA with B objectives, the boldface data are the best among these
methods, and those labeled by ’†’ mean data significantly different from RPEA’s.

Table 3. Metric IGD of different methods
Problem ε-MOEA MOEA/D HypE NSGA-III RPEA
DTLZ1-6 8.809E-2(1.2E-3)† 1.434E-1(7.0E-3)† 2.774E-1(8.0E-2)† 7.669E-2(3.1E-4)† 1.794E-1(1.8E-2)
DTLZ1-8 1.266E-1(3.7E-3)† 1.783E-1(6.0E-3)† 3.241E-1(3.8E-1)† 9.293E-2(1.2E-2)† 2.294E-1(1.6E-2)
DTLZ1-15 7.578E-1(2.1E-1)† 2.259E-1(1.1E-2) 4.061E-1(1.6E-1)† 1.612E-1(5.3E-2)† 2.413E-1(2.0E-2)
DTLZ2-6 2.925E-1(3.1E-3)† 4.215E-1(1.8E-2)† 4.734E-1(9.3E-3)† 3.066E-1(1.2E-3)† 2.697E-1(8.0E-3)
DTLZ2-8 4.200E-1(4.4E-3)† 5.060E-1(3.3E-2)† 6.327E-1(1.7E-2)† 3.797E-1(2.5E-2)† 3.620E-1(1.2E-3)
DTLZ2-15 5.321E-1(2.6E-2) 7.831E-1(7.9E-2)† 8.712E-1(2.8E-2)† 7.197E-1(3.0E-2)† 5.305E-1(2.2E-2)
DTLZ3-6 3.873E-1(1.7E-1)† 4.255E-1(1.8E-2)† 5.616E+1(7.8E+0)† 3.070E-1(1.4E-3)† 6.700E-1(6.3E-2)
DTLZ3-8 7.181E-1(8.8E-1) 5.251E-1(5.1E-2)† 7.342E+1(1.2E+1)† 7.259E-1(7.3E-1)† 7.371E-1(1.0E-1)
DTLZ3-15 6.777E+1(1.7E+1)† 7.883E-1(5.7E-2)† 2.938E+1(1.1E+1)† 4.518E+0(2.0E+0)† 9.776E-1(2.2E-1)
DTLZ4-6 3.509E-1(7.2E-2)† 6.445E-1(1.4E-1)† 4.629E-1(1.1E-2)† 3.567E-1(9.3E-2)† 2.678E-1(1.6E-3)
DTLZ4-8 4.328E-1(8.7E-3)† 7.174E-1(1.1E-1)† 6.200E-1(1.4E-2)† 4.296E-1(8.3E-2)† 3.524E-1(4.6E-3)
DTLZ4-15 6.045E-1(4.5E-2)† 8.769E-1(4.8E-2)† 8.166E-1(3.8E-3)† 6.954E-1(3.8E-2)† 5.367E-1(1.4E-2)
DTLZ5-6 1.187E-1(1.5E-2)† 4.059E-2(2.5E-3)† 6.546E-2(1.1E-2)† 2.696E-1(8.3E-2)† 3.884E-2(1.7E-2)
DTLZ5-8 1.619E-1(9.2E-3)† 4.622E-2(5.2E-3)† 1.077E-1(1.7E-2)† 3.331E-1(9.5E-2)† 4.446E-2(2.1E-2)
DTLZ5-15 1.745E-1(3.0E-2)† 4.317E-2(8.5E-3)† 6.790E-1(4.4E-2)† 2.729E-1(3.2E-2)† 5.436E-2(2.5E-2)
DTLZ6-6 7.197E-1(2.3E-1)† 1.251E-1(2.8E-2)† 5.699E-1(8.9E-2)† 4.451E-1(1.4E-1)† 2.252E-1(2.4E-1)
DTLZ6-8 5.995E-1(5.0E-2)† 9.983E-2(2.3E-2)† 1.344E+0(6.4E-2)† 1.144E+0(7.0E-1)† 3.616E-1(1.7E-1)
DTLZ6-15 6.472E-1(1.2E-1) 1.103E-1(2.3E-2)† 2.942E+0(3.2E-1)† 1.031E+0(7.6E-1)† 6.576E-1(2.2E-1)
DTLZ7-6 4.715E-1(1.8E-1)† 7.530E-1(5.6E-2)† 4.968E-1(6.0E-3)† 6.371E-1(4.3E-2)† 5.815E-1(2.9E-1)
DTLZ7-8 4.500E-1(1.9E-1)† 1.202E+0(4.1E-1)† 6.896E-1(9.8E-3)† 1.110E+0(1.2E-1)† 1.399E+0(3.9E-1)
DTLZ7-15 9.393E+0(1.6E+0)† 1.832E+0(3.1E-1)† 2.075E+0(2.5E-1)† 6.234E+0(4.0E-2)† 4.185E+0(8.2E-1)

Although DTLZ1 has a linear and simple Pareto front, it is a multimodal problem with a great number of local
optima. Table 3 reports that, on DTLZ1-6, NSGA-III and ε-MOEA perform well, followed by MOEA/D, RPEA,
and HypE. For this problem with 8 and 15 objectives, NSGA-III remains first, and RPEA and MOEA/D also obtain
acceptable results, whereas ε-MOEA achieves poor performance. The reason that RPEA does not perform as well
as NSGA-III and MOEA/D on this problem is that RPEA has a normalization procedure. For DTLZ1, the ranges
of its objective values are much larger than those of its Pareto front, and the normalization procedure is prone to
transforming the original objectives into their wrong scales. Similar results are also observed in [42].

With the same spherical Pareto front, problems DTLZ2, DTLZ3, and DTLZ4 are designed to test different capa-
bilities of an algorithm, where DTLZ2 is relatively easier to solve. Based on DTLZ2, a huge number of local optima
are introduced to DTLZ3, and it is a big challenge for an algorithm to achieve its Pareto front. The non-uniform
solutions of DTLZ4 in distribution make an algorithm difficult to maintain diversity in the objective space. From the
IGD results shown in Table 3, for DTLZ2, RPEA significantly outperforms the other in most situations. For the same
reason when solving DTLZ1, the performance of RPEA decreases on DTLZ3, whereas NSGA-III shows a competi-
tive performance on DTLZ3-6, and MOEA/D on DTLZ3-8 and DTLZ3-15. It is worth noting that NSGA-III performs
poorly on DTLZ3-15, since the non-dominated sorting employed in NSGA-III has a low efficiency in selecting solu-
tions with a good convergence performance when the number of objective is very large. For DTLZ4, RPEA achieves
the best performance, indicating its strong ability in solving problems with irregular Pareto fronts.

The Pareto fronts of problems DTLZ5 and DTLZ6 are degenerate curves, which are designed to test the ability
of an algorithm in seeking for a lower dimensional Pareto front while working in a higher dimensional objective
space. DTLZ6 is much harder to solve than DTLZ5 because of bias in its objectives. From Table 3, for DTLZ5,
both RPEA and MOEA/D generally perform better than the other three. More specifically, RPEA obtains lower IGD
values on 6- and 8-objective DTLZ5, while MOEA/D outperforms on 15-objective DTLZ5. NSGA-III is ineffective
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on DTLZ5 since its reference points cover the whole Pareto front. RPEA does not show advantages on DLTZ6 for its
normalization procedure.

Problem DTLZ7 has a number of disconnected Pareto front regions in order to test the ability of an algorithm
to maintain sub-populations in disconnected portions of the objective space. For this problem, ε-MOEA shows ad-
vantages on the low-dimensional instances, and MOEA/D performs better when a larger number of objectives are
involved. The results of RPEA are acceptable.

In addition, to intuitively investigate the performances of reference points(vectors)-based algorithms, i.e., MOEA/D,
NSGA-III, and RPEA, the Pareto solution set obtained by these algorithms on DTLZ4-6 and DTLZ5-6 in a single run
are visualized by the parallel coordinates slots and aggregation trees [22] in Figures 6 and 7. This particular run is
associated with the result closest to the mean IGD value. From the aggregation trees in Figure 6, we can see that all
the three algorithms can treat the objectives conflicting with each other. However, from the parallel coordinate slots in
Figure 6, MOEA/D struggles to maintain the diversity of its solutions. NSGA-III performs better than MOEA/D, but
not as well as RPEA. From the aggregation trees in Figure 7, both MOEA/D and RPEA can correctly distinguish f6 as
the most conflicting one from the other. However, RPEA also regards the rest objectives as conflicting with each other
rather than harmonious. NSGA-III fails to distinguish the relationship among objectives, since the reference points
compel solutions to widely spread in the objective space. From the parallel coordinate slots in Figure 7, MOEA/D
actually performs poorly, since there are a number of solutions overlapping with each other. NSGA-III struggles to
converge to the true Pareto front due to its failure in distinguishing the relationship among objectives. RPEA achieves
relatively good performances, although a small number of solutions cannot converge to the true Pareto front. These
results show that RPEA has a good adaptability to problems with irregular or degenerate Pareto fronts, whereas the
other reference points-based algorithms have not. That is because their reference points (vectors) are predefined and
uniformly distributed in the whole objective space.

Overall, based on the studies on problems with various characteristics, RPEA is very competitive in many-
objective optimization, especially when a problem has a irregular or degenerate Pareto front, and it outperforms
the other four state-of-the-art algorithms in 8 out of 21 test instances.

6. Conclusions

This paper exploited the potential of the reference points in handling MaOPs. The proposed method, RPEA,
can mainly be characterized as: (1) adaptively generating a series of reference points with good convergence and
distribution based on the evolution of a population; (2) greatly increasing the selection pressure toward the Pareto front
by calculating the distances between the reference points and the individuals in the environment selection process.

The propose method was applied to seven benchmark MaOPs, and compared with the other four state-of-the-art
method to evaluate its performance. The results reveal that RPEA is very competitive to the others in terms of seeking
for a solution set with good approximation and distribution in many-objective optimization. Furthermore, the effects
of two key parameters, α and δ, are experimentally investigated. The results show that the reference points with good
performances can be obtained in short time; and RPEA can achieve a good tradeoff among the convergence and the
diversity

It is worth mentioning that RPEA has been applied only to optimization problems with numerical objectives. Its
effectiveness in other optimization problems, especially in engineering optimization, should further be confirmed.
In addition, RPEA adopts the key parameter, δ, which will affect its performance, as mentioned in the experiments
above. If appropriate methods are employed to adaptively adjust the value of δ during the evolution, the performance
of RPEA will further be improved, which is the focus of our future work. Moreover, the Tchebychev approach was
only adopted in this study and it may not be appropriate to all kinds of problems. Hence, adopting other reference
points-based approaches, e.g., normal-boundary intersection [43] and g-dominance [44], to evaluate individuals, so as
to have a deeper insight into the behavior of RPEA is also our further research work.
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Figure 6. The Pareto solutions obtained by MOEA/D, NSGA-III, and RPEA on 6-objective DTLZ4, shown bythe parallel coordinates slots and
aggregation trees.
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(b) Aggregation Tree of MOEA/D
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(c) Parallel Coordinate Plot of NSGA-III
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(d) Aggregation Tree of NSGA-III
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(e) Parallel Coordinate Plot of RPEA
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(f) Aggregation Tree of RPEA

Figure 7. The Pareto solutions obtained by MOEA/D, NSGA-III, and RPEA on 6-objective DTLZ5, shown by the parallel coordinates slots and
aggregation trees.

17



/ Applied Soft Computing 00 (2016) 1–19 18

References

[1] P. M. Reed, D. Hadka, Evolving many-objective water management to exploit exascale computing, Water Resources Research 50 (10) (2014)
8367–8373.

[2] A. S. Sayyad, T. Menzies, H. Ammar, On the value of user preferences in search-based software engineering: a case study in software product
lines, in: Software engineering (ICSE), 2013 35th international conference on, IEEE, 492–501, 2013.

[3] Y.-Y. Han, D.-w. Gong, X.-Y. Sun, Q.-K. Pan, An improved NSGA-II algorithm for multi-objective lot-streaming flow shop scheduling
problem, International Journal of Production Research 52 (8) (2014) 2211–2231.

[4] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II, Evolutionary Computation, IEEE
Transactions on 6 (2) (2002) 182–197.

[5] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, Tech. Rep., Eidgenössische Technische
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