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Abstract—Local Pareto optimal solutions may exist in multi-
modal multi-objective optimization problems. Traditional multi-
objective evolutionary algorithms usually try to escape from local
Pareto optima. However, these solutions may be good enough for
the decision makers and are additional options if Pareto optimal
solutions are infeasible. In this paper, we modify our previous
double-niched evolutionary algorithm (DNEA) to search for local
Pareto optimal solutions. The new version is termed as DNEA-L.
We apply DNEA-L to 3- and 4-objective polygon-based problems
with local Pareto optima. The experimental results show that
DNEA-L is efficient to find a large number of local Pareto optimal
solutions with good diversity.

Index Terms—multi-modal multi-objective optimization, local
Pareto optimal solution, niche

I. INTRODUCTION

Multi-objective optimization problems (MOPs) are com-
monly seen in real-world applications, such as job shop
scheduling [1] and financial portfolio management [2]. With-
out loss of generality, an MOP can be formulated as follows:

minf(x) = min(f1(x), . . . , fM (x)),
s.t. x ∈ S ⊂ Rn,

(1)

where x is an n-dimensional decision vector in the decision
space S, fm(x) is the m-th objective to be minimized (m =
1, ...,M ), and M is the number of objectives. Since these
objectives usually conflict with each other, the MOP in (1)
has no single optimal solution. Instead, it has a number of
Pareto optimal solutions, which are defined as follows:

Definition 1. If there exists no solution in the decision space
that dominates x∗, then x∗ is a Pareto optimal solution.
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x∗ is also known as a global Pareto optimal solution, since
it is non-dominated in the entire decision space. The image of
the set of all global Pareto optimal solutions in the objective
space is called the Pareto front (PF).

On the other hand, a local Pareto optimal solution [3] is
defined as follows:

Definition 2. For a small positive value ε, the neighborhood
of x′ is defined by the set of all solutions within the distance
ε from x′ in the decision space. If there exists no solution in
the neighborhood of x′ that dominates x′, x′ is a local Pareto
optimal solution.

Note that here we do not regard a global Pareto optimal
solution as a local one.

If the MOP in (1) has at least one local Pareto optimal
solution or at least two different global Pareto optimal solu-
tions for any point on the PF, it is regarded as a multi-modal
multi-objective optimization problem (MMOP) [4].

A large number of multi-objective evolutionary algorithms
(MOEAs) have been proposed and successfully applied to
MOPs over the past two decades, e.g., non-dominated sorting
genetic algorithm II (NSGA-II) [5] and MOEA based on
decomposition (MOEA/D) [6]. However, they usually cannot
handle MMOPs. That is, they are unable to find different
global Pareto optimal solutions with the same objective values
due to lack of diversity maintenance mechanism in the decision
space. They also cannot find local Pareto optimal solutions,
since they are designed to escape from local Pareto optimal
regions. In traditional multi-objective optimization, only global
Pareto optimal solutions are assumed to be useful for the
decision maker.

Recently, some multi-modal MOEAs have been proposed to
search for different global Pareto optimal solutions with the
same objective values, such as Omni-optimizer [7], Niching-
CMA [8], decision space based niching NSGA-II (DN-
NSGA-II) [9], multi-objective particle swarm optimization
algorithm using ring topology and special crowding distance



(MO Ring PSO SCD) [10], double-niched evolutionary al-
gorithm (DNEA) [11], MOEA/D with addition and dele-
tion operators (MOEA/D-AD) [12], and multi-modal multi-
objective evolutionary algorithm using two-archive and recom-
bination strategies (TriMOEA-TA&R) [4]. These algorithms
are developed based on existing MOEAs. Only non-dominated
solutions are preferred in the selections. Therefore, searching
for local Pareto optimal solutions is not a design goal in these
algorithms.

The quality (i.e., objective values) of local Pareto optimal
solutions may be good enough for the decision maker in some
applications. They may be quite different from the global
Pareto optimal solutions in the decision space. If global Pareto
optimal solutions are infeasible due to some factors which are
not included in the mathematical model in (1), then finding
these solutions will give the decision maker more options.

Therefore, our goal in this study is to find good local Pareto
optimal solutions. We propose a variant of DNEA, termed
DNEA-L, where an extra archive is used to store multiple non-
dominated fronts. Global and local Pareto optimal solutions
are expected to be found on those fronts. There are two new
parameters in DNEA-L. One is the number of non-dominated
fronts to store, i.e., K. A larger value of K indicates that local
Pareto optimal solutions with worse qualities are acceptable.
The other is the neighborhood size θnb, which is similar to
ε in Definition 2. For each solution x, the solutions whose
distances to x in the decision space are smaller than θnb are
its neighbors. If a solution is dominated by its neighbors, it
is not regarded as a local Pareto optimal solution. A larger
value of θnb suggests a larger difference in the decision space
between a solution on a non-dominated front and solutions on
another front. However, θnb is usually difficult to specify when
we do not have preliminary knowledge about the optimization
problem. Therefore, in our method, another parameter Nns

is required instead. Nns is the number of nearest solutions
to be considered. The algorithm automatically determine θnb
according to Nns, which will be described in Subsection
II-B. In the experiments, we apply DNEA-L to polygon-based
problems [13] to investigate its ability in finding local Pareto
optimal solutions.

The remainder of this paper is organized as below. In
Section II, DNEA is briefly introduced. Then, the proposed
DNEA-L is described in detail. Section III presents the ex-
perimental design and results. Section IV concludes the paper
and provides future research directions.

II. PROPOSED METHOD

A. Brief Introduction to DNEA
The general framework of DNEA [11] is similar to standard

generational evolutionary algorithms, whereas its environmen-
tal selection makes it special.

In the environmental selection, when comparing solutions
on the kth non-dominated front Fk, the double-sharing func-
tion fDS of every solution is calculated as follows:

fDS(xi) =
∑

xj∈Fk

Shobj(i, j) + Shdec(i, j), (2)

where

Shobj(i, j) = max{0, 1− dobj(i, j)/σobj},
Shdec(i, j) = max{0, 1− ddec(i, j)/σdec}.

(3)

In (3), dobj(i, j) and σobj are the Euclidean distance between
xi and xj and the niche radius in the objective space, respec-
tively, and ddec(i, j) and σdec have the similar meanings in
the decision space. fDS estimates a solution’s density both in
the objective and decision spaces. By removing solutions with
the largest fDS values, DNEA can maintain a good diversity
both in the objective and decision spaces. The experimental re-
sults demonstrated its effectiveness on finding different global
Pareto optimal solutions with the same objective values. Please
refer to [11] for more details.

The experimental results in [11] also showed that DNEA
obtained more local Pareto optimal solutions than traditional
MOEAs in some cases. However, both the number and the
quality of local Pareto optimal solutions cannot be controlled.
In this study, we propose DNEA-L to search for local Pareto
optimal solutions under controlled conditions.

B. DNEA-L

The general framework of DNEA-L is presented in Al-
gorithm 1, where a multi-front archive (AMF ) is employed
to store multiple non-dominated fronts. In Algorithm 1, a
population P is initialized with a predefined size N (line 1). In
each generation (lines 3-7), N parents are selected from AMF

to generate a new population (lines 4 and 5). Then, AMF is
updated (line 6).

Algorithm 1 General Framework of DNEA-L
Require: P (population), N (population size), AMF (multi-

front archive), K (number of non-dominated fronts), Nns

(number of nearest solutions)
1: P = Initialize(P ) ;
2: AMF = Multi-Front Archive Update(P , N , K, Nns);
3: while the stopping criterion is not met do
4: P ′ = Mating selection(AMF , N );
5: P = Reproduction(P ′);
6: AMF =Multi-Front Archive Update(P∪AMF , N , K,
Nns);

7: end while
8: return AMF .

The proposed multi-front archive update method is shown as
Algorithm 2. In Algorithm 2, we first calculate the distances
between each solution in the candidate solution set Q and
its Nns nearest solutions in the decision space. The average
distance over |Q|×Nns distances is used as the neighborhood
size θnb (line 1). Then, we set Q′ = Q (line 2). For each
solution x in Q, solutions in Q′ whose distances to x are
smaller than θnb in the decision space are defined as the
neighbors of x (lines 3-4). All solutions in Q dominated by
their neighbors are removed (lines 5-7) since they are not
local Pareto optimal solutions. Next, Q is sorted into non-
dominated fronts, which are denoted as F1∪· · ·∪FK∪. . . (line



9). The number of solutions on each of the first K fronts is
decreased to N by removing solutions with the largest double-
sharing function values in (2) if it is larger than N (lines 11-
14). Finally, the first K fronts are united as AMF (line 15).
Note that the number of solutions in AMF is not fixed. The
maximum size of AMF is N ×K.

Algorithm 2 Multi-Front Archive Update(Q, N , K, Nns)
1: Calculate the distances between each solution in Q and

its Nns nearest solutions in the decision space. Denote
the average distance over |Q| ×Nns distances as θnb;

2: Q′ = Q;
3: for all x ∈ Q do
4: Find all the solutions in Q′ whose distances to x are

smaller than θnb in the decision space. Denote the set of
such solutions as Qnb;

5: if x is dominated by any solution in Qnb then
6: Remove x from Q;
7: end if
8: end for
9: Sort Q into non-dominated fronts, denoted as F1 ∪ · · · ∪
FK ∪ . . . ;

10: AMF = ∅;
11: for k = 1, . . . ,K do
12: while |Fk| > N do
13: Remove the solution with the largest double-

sharing function value from Fk;
14: end while
15: AMF = AMF ∪ Fk;
16: end for
17: return AMF .

Using Algorithm 2, the global and local Pareto optimal
solutions with good diversity are expected to be found on the
first and the other non-dominated fronts, respectively.

III. EXPERIMENTS

A. Polygon-Based Problems with local Pareto optima

In [11], we proposed polygon-based problems with local
Pareto optima, where I equilateral polygons with M vertexes
locate in the 2-D decision space. The mth vertexes of the ith
polygon is denoted as Xm,i, m = 1, . . . ,M, i = 1, . . . , I . The
mth objective function is

fm(x) = min{||x−Xm,i||2, i = 1, . . . , I}. (4)

When the sizes of polygons are different, only the smallest
polygon is the global Pareto optimal region, while the others
are local Pareto optimal regions.

In this study, the feasible region is x1, x2 ∈ [−100, 100].
The center and the distance between a vertex and the center
of the first, second, third, and fourth polygons are (−50,−50)
and 16, (50,−50) and 20, (50, 50) and 24, and (−50, 50) and
28, respectively.

In Fig. 1, we show 40401 (201 × 201) uniformly sampled
solutions in different colors based on their Pareto ranks for the
3- and 4-objective polygon-based problems with local Pareto

optima. A brighter (warmer) tone corresponds to a lower
Pareto rank. We can see from Fig. 1 that the first polygon is
the brightest region. The second, third, and fourth polygons are
darker in sequence. It is interesting to note that the vertexes in
the second, third, and fourth polygons are brighter than their
neighborhood. That is, the solutions close to these vertexes
have a lower Pareto rank than their neighbors. These solutions
are dominance resistant solutions (DRSs) [14]. One objective
value of a DRS is very small, while the others are very large.
This makes a DRS having a low chance to be dominated by
other solutions.

We can also observe from Fig. 1 that some solutions
between two polygons are not darker than their neighbors. This
indicates that these solutions could be local Pareto optimal
solutions.

To intuitively understand which solutions are global and
local Pareto optimal solutions, we first uniformly sample
10201 (101×101) solutions in the entire decision space. Then,
we remove solutions dominated by their neighbors by setting
θnb = 6. Under this setting, each solution has 24 neighbors.
Finally, the remaining solutions are sorted into non-dominated
fronts and shown in Fig. 2. Note that in Figs. 2-4, and 6, ◦, ♦,
O, �, ×, and ∗ denote the solutions on the first, second, third,
fourth, fifth, and sixth non-dominated fronts, respectively. •
denotes the other local non-dominated solutions. Also, note
that setting θnb to other values leads to different results. A
large value of θnb may reduce the number of solutions on
each front and the number of fronts. The results under other
settings of θnb are not provided due to the page limitation.

We can see from Fig. 2 that most solutions on the first
four non-dominated fronts locate in the four polygons in
sequence. The solutions on the other non-dominated fronts
locate between the polygons. It is interesting to note that some
solutions on the first four non-dominated fronts are outside the
polygons. They are actually not global or local Pareto optimal
solutions. The reason is that it is difficult to find solutions that
dominate these solutions with a limited number of samples. In
the experiments, we use the solutions in Fig. 2 as a reference
to observe the behavior of DNEA-L.

B. Results

In this subsection, we apply DNEA-L and DNEA to the
3- and 4-objective polygon-based problems with local Pareto
optima. In both DNEA-L and DNEA, σobj and σdec are
automatically determined by the average distances between
solutions in the objective and decision space, respectively.
Simulated binary crossover and polynomial mutation are ap-
plied as the crossover and mutation operators, respectively,
where the distribution indexes in both operators are set to
20. The crossover and mutation probabilities are 1.0 and 0.5,
respectively. The population size is set to 100. The termination
criterion of each algorithm is the total number of generations
200. Each algorithm is executed 20 independent runs on each
problem.

In the following, we examine the behavior of DNEA-L
under different settings of K and Nns, respectively.



(a) 3-Objective (b) 4-Objective

Fig. 1. 40401 (201× 201) uniformly sampled solutions in different colors based on their Pareto ranks for 3- and 4-objective polygon-based problems with
local Pareto optima. A brighter (warmer) tone corresponds to a lower Pareto rank.
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Fig. 2. The reference global and local non-dominated solutions to the 3- and 4-objective polygon-based problems with local Pareto optima. Note that in
Figs. 2-4, and 6, ◦, ♦, O, �, ×, and ∗ denote the solutions on the first, second, third, fourth, fifth, and sixth non-domiated fronts, respectively. • denotes the
other local non-dominated solutions.

1) Different Settings of K: Table I presents the average
hypervolume (HV) obtained by DNEA and DNEA-L with
K = 1, 2, 3, 4, 5, and 6, respectively (while Nns is set to
25). We also show the hypervolume of the reference solutions
in Fig. 2. HVk, k = 1, . . . , 6 denotes the HV value of the
kth non-dominated front. The best (largest) value is in bold
face. Note that the maximum value of each objective of the
first six non-dominated fronts is around 60. Therefore, we use
(66, . . . , 66) as the reference point to calculate HV. Then we
normalize HV into [0,1]. For a more sophisticated reference
point specification method, see [15].

In Figs. 3 and 4, we show the solutions obtained by DNEA-
L in a single run under different settings of K, respectively.

This particular run is associated with the result which is the
closest to the average

∑
k=1,...,6 HVk in Table I. Since the

solutions obtained by DNEA look very similar to those of
DNEA-L with K = 1, we do not show them due to the page
limitation.

We can see from Table I that, no surprisingly, HV1 of the
reference solutions in Fig. 2 is the best, since the distribution
of these solutions is almost perfect. However, the differences
among HV1 values in Table I are very small. This indicates
that DNEA and DNEA-L under different settings of K can
find global Pareto optimal solutions with good diversity. We
can also observe from Figs. 3 and 4 that a number of solutions
are well distributed in the global Pareto optimal region (the
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Fig. 3. The solutions obtained by DNEA-L on the 3-objective polygon-based problem with local Pareto optima under different settings of K.
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Fig. 4. The solutions obtained by DNEA-L on the 4-objective polygon-based problem with local Pareto optima under different settings of K.



TABLE I
RESULTS OF HYPERVOLUME.

 

DNEA
DNEA-L

(K=1)

DNEA-L

(K=2)

DNEA-L

(K =3)

DNEA-L

(K=4)

DNEA-L

(K=5)

DNEA-L

(K =6)

Reference

in Fig. 2

HV1 0.7629 0.7627 0.7714 0.7709 0.7704 0.7706 0.7704 0.7779

HV2 0.0000 0.0000 0.6647 0.6669 0.6677 0.6666 0.6673 0.6779

HV3 0.0000 0.0000 0.0000 0.5611 0.5634 0.5625 0.5622 0.5735

HV4 0.0000 0.0000 0.0000 0.0000 0.4719 0.4712 0.4677 0.4652

HV5 0.0000 0.0000 0.0000 0.0000 0.0000 0.3699 0.3718 0.2654

HV6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.2714 0.1903

HV1 0.6514 0.6497 0.6555 0.6558 0.6544 0.6552 0.6552 0.6625

HV2 0.0000 0.0000 0.5226 0.5255 0.5244 0.5248 0.5246 0.5334

HV3 0.0000 0.0000 0.0000 0.4020 0.4010 0.4011 0.4007 0.4136

HV4 0.0000 0.0000 0.0000 0.0000 0.2935 0.2917 0.2910 0.3049

HV5 0.0000 0.0000 0.0000 0.0000 0.0000 0.1532 0.1536 0.1214

HV6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0979 0.0853
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left-bottom polygon).
From Table I, the HV2, . . . ,HVK values of solutions ob-

tained by DNEA-L are satisfying when K > 1. Also, from
Figs. 3 and 4, more and more non-dominated fronts are
found by DNEA-L by increasing K. Most solutions on these
non-dominated fronts are local Pareto optimal solutions. The
patterns of these solutions are similar to those in Figs. 1 and 2.
These observations suggest that DNEA-L is capable of finding
local Pareto optimal solutions.

We notice from Table I that when K > 3 for the 3-objective
problem, HV4, HV5, and/or HV6 obtained by DNEA-L are
even better than those of the reference solutions. Similar
phenomenon is observed when K > 4 for the 4-objective
problem. Comparing Figs. 1-4, more solutions which are not
local Pareto optimal solutions are obtained by increasing K.
For example, two solutions on the third non-dominated front
are close to the left-bottom triangle in Fig. 3 (c). These
solutions are not local Pareto optimal solutions according to
Figs. 1 and 2. However, they contribute a lot to the HV value.
One reason of obtaining these solutions is that no neighbor
solutions dominate these solutions due to a limited archive
size (i.e., K × N ). Another reason is that Nns is not large
enough. Increasing N and/or Nns can reduce the number of
such solutions.

2) Different Settings of Nns: We apply DNEA-L with
Nns = 1, 10, 25, 50, 100 to the 3-objective problem. Note that
K is set to 3. Ideally, all the obtained solutions should locate
in the first three polygons. In Fig. 5, we show the average
runtimes and the percentages of solutions in the first three
polygons under the different settings of Nns.

We can see from Fig. 5 that the percentage increases as
Nns increases. This indicates that a large value of Nns can
reduce the number of the obtained solutions which are neither
global nor local Pareto optimal. However, the increase of the
percentage is very small when Nns > 25. On the other hand,
the runtime increases rapidly as Nns increases. Therefore,
when the computation resource is limited, we can set Nns

to a relatively small value to balance the performance and the
computation cost, such as Nns = 25 in this case.

In Fig. 6, we show the solutions obtained by DNEA-L in a
single run under different settings of Nns. From Fig. 6, when
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Fig. 5. The average runtimes and the percentages of solutions in the first
three polygons when Nns is set to 1, 10, 25, 50, and 100.

Nns = 1, a large number of solutions on the second and
third non-dominated fronts are obtained outside the first (left-
bottom) polygon. These solutions are not local Pareto optimal
solutions. As Nns increases, the number of solutions outside
the polygons decreases. The results when Nns is set to 75 and
100 look very similar to those when Nns = 50. Thus they are
not shown here.

IV. CONCLUSION

In this study, we proposed DNEA-L to search for local
Pareto optimal solutions. In DNEA-L, a multi-front archive
is used to maintain multiple non-dominated fronts with good
diversity both in the objective and decision spaces. The global
Pareto optimal solutions are expected to be found on the first
non-dominated front, while the local ones are expected to be
found on the other fronts.

When using DNEA-L, two parameters should be specified.
One is the number of non-dominated fronts to maintain,
i.e., K. The other is the number of nearest solutions to
decide whether a solution is local Pareto optimal, i.e., Nns.
We applied DNEA-L to 3- and 4-objective polygon-based
problems with local Pareto optima under different settings of
K and Nns. The experimental results show that by increasing
K, DNEA-L can find more and more local Pareto optimal
solutions. Increasing Nns leads to less solutions which are
neither global nor local Pareto optimal.

One future work is to apply DNEA-L to other multi-
modal multi-objective optimization problems with local Pareto
optima. Another is to design a performance metric to evaluate
an optimizer’s ability in finding local Pareto optima.
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