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Abstract. Multi-modal multi-objective optimization problems are com-
monly seen in real-world applications. However, most existing researches
focus on solving multi-objective optimization problems without multi-
modal property or multi-modal optimization problems with single objec-
tive. In this paper, we propose a double-niched evolutionary algorithm
for multi-modal multi-objective optimization. The proposed algorithm
employs a niche sharing method to diversify the solution set in both the
objective and decision spaces. We examine the behaviors of the proposed
algorithm and its two variants as well as three other existing evolutionary
optimizers on three types of polygon-based problems. Our experimental
results suggest that the proposed algorithm is able to find multiple Pareto
optimal solution sets in the decision space, even if the diversity require-
ments in the objective and decision spaces are inconsistent or there exist
local optimal areas in the decision space.

Keywords: Evolutionary computation, multi-objective optimization, multi-
modal optimization, niche, diversity

1 Introduction

There are many multi-objective optimization problems in real-world applica-
tions. Due to the conflicting nature of objectives, there is typically no single
optimal solution to these problems, rather a Pareto optimal solution set. The
image of the Pareto optimal solution set in the objective space is referred to as
the Pareto front. The general task (in a posteriori situations) of a multi-objective
optimizer is to find an approximate solution set not only close to but also well
distributed on the Pareto front.

In view of this, a large number of multi-objective evolutionary algorithms
(MOEAs) are designed to solve multi-objective optimization problems over the
past two decades. The most typical MOEAs are the Pareto-based ones, in which
the Pareto dominance relationship is adopted as the first selection criterion to
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distinguish well converged solutions, while a density-based second selection cri-
terion is used to promote diversity in the objective space. The widely adopted
density-based selection criteria are the crowding distance [1] and niche sharing [4]
methods, to name a few.

On the other hand, the objective(s) of an optimization problem may have
multi-modal property. For such an objective, there exist different optimal solu-
tions which have the same objective value. This requires evolutionary algorithms
to maintain diversity among solutions in the decision space to provide more
options for the decision maker. Most existing researches focus on multi-modal
single-objective optimization, where niche techniques, e.g., the fitness sharing [3]
and crowding [12] methods, are usually employed to diversify the solution set.

Up to now, there are only a few researches on multi-modal multi-objective
evolutionary optimization. How to maintain diversity in both the objective and
decision spaces is a crucial issue for evolutionary algorithms to solve multi-modal
multi-objective optimization problems. In this paper, we propose a Double-
Niched Evolutionary Algorithm (DNEA), in which the niche sharing method
is adopted in both the objective and decision spaces. We compared the proposed
DNEA with three state-of-the-art designs on polygon-based problems, where
the performance of the achieved solution sets in the objective space can be visu-
ally examined in the decision space. Besides a basic type of the polygon-based
problems, we also adopted two other types to further investigate and discuss the
behaviors of the competing algorithms on multi-modal multi-objective optimiza-
tion.

The remainder of this paper is organized as follows. In Section 2, the related
works on multi-modal multi-objective optimization problems and techniques for
diversity maintenance are reviewed for the completeness of the presentation. The
proposed DNEA is then described in detail in Section 3. Section 4 presents the
experimental results and relevant discussions. Section 5 concludes the paper and
provides future research directions.

2 Related Works

2.1 Multi-modal Multi-objective Optimization Problems

As defined in [7] recently, a multi-modal multi-objective optimization problem
has more than one Pareto optimal solution sets. In other word, there are at
least two similar feasible regions in the decision space corresponding to the same
region of the objective space. Later, [13] gave a simple real-world example in the
path-planning problem. The traveling time and the number of transfer stations
are two objectives in this example. There may exist two different paths that have
the same objective values. In such a situation, if an optimizer can provide both
of the paths, the decision maker will have more options for other considerations
(e.g. gas station).

Actually, before the concept of multi-modal multi-objective optimization
problems is proposed, there have been some researches on this topic. For in-
stance, a map-based problem is proposed in [5], where the goal is find a location
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nearest to elementary school, junior-high school, convenience store, and railway
station on a real-world map. Clearly, it is a four-objective optimization problem.
Since the numbers of the aforementioned places are usually more than one on
the map, there may exist several optimal locations that have the same objective
values. In addition, a few real-world multi-objective optimization problems are
also identified to multi-modal property in the literature [11].

In this study, we adopt the polygon-based problems [5] as test problems in
the experiments. The polygon-based problems can be termed as an ideal version
of the aforementioned map-based problems. The Pareto optimal sets of these
problems are located in several regular polygons, which is relatively easy for
investigating the behavior of an optimizer at the early stage of the research
on multi-modal multi-objective optimization. Moreover, there have not been a
widely accepted metric to simultaneously measure the convergence and diversity
performances in both the objective and decision spaces of a solution set for
multi-modal multi-objective optimization, whereas these performances in the
polygon-based problems can be visually examined in a two-dimensional space.
This is another important reason of adopting the polygon-based problems in this
study.

2.2 Diversity Maintenance in the Objective and Decision Spaces

In early 70s and 80s, some classic niche techniques, e.g., the fitness sharing [3]
and crowding [12] methods, have been proposed to manipulate the distribution
of solutions in the decision space for multi-modal evolutionary optimization. In
the fitness sharing method, individuals in the same neighborhood will degrade
the fitness of each other, thereby discouraging the others occupying the same
niche. In crowding methods, an offspring and its close parents compete with
each other, and individuals with better fitness in the sparse areas are favored.
There are a lot of other niche methods developed in the last two decades, e.g.,
clearing [10] and speciation [6]. However, all of above methods can only deal
with single-objective optimization problems.

On the other hand, MOEA are developed to provide a diverse solution set in
the objective space for multi-objective optimization. Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) [1] is one of the most representative Pareto-based
MOEAs. In NSGA-II, solutions with large crowding distances in the objective
space are preferred in the environmental selection. Niched Pareto Genetic Al-
gorithm (NPGA) [4] is another classic Pareto-based MOEA, where the fitness
sharing method [3] is termed as the niche sharing method to promote diversity
in the objective space. MOEA Based on Decomposition (MOEA/D) [14] is also
found a promising alternative to solve multi-objective optimization problems. In
MOEA/D, a number of scalarizing functions based on a set of well distributed
reference vectors are used to guide the evolution. The diversity of solutions is
ensured by the distribution of the reference vectors. In addition, indicator-based
MOEAs [8, 15] and reference points-based MOEAs [9] are theoretically well-
supported options.
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There have been a few works on maintaining diversity in the decision space for
multi-objective optimization. In [2], the Omni-optimizer was proposed by apply-
ing the crowding distance in the decision space. A decision space-based niching
NSGA-II (DN-NSGA-II) in [7] was developed to search multiple Pareto optimal
solution sets, which is similar to omni-optimizer. Very recently, a multi-objective
particle swarm optimization algorithm with ring topology and special crowding
distance [13] is proposed to obtain good distributions among the population.

In this paper, we propose a double-niched evolutionary algorithm for multi-
modal multi-objective optimization. In the proposed algorithm, the niche sharing
method is simultaneously employed for diversity maintenance in both the ob-
jective and decision spaces. We describe the proposed algorithm in detail in the
next section.

3 A Double-Niched Evolutionary Algorithm

The general framework of DNEA is similar to other generational evolutionary
algorithms. What makes DNEA special is its environmental selection operator,
which is detailed in Algorithm 1.

Algorithm 1 Environmental Selection of DNEA

Require: N (population size), Q (candidate solution set), σobj (niche radius in the
objective space), σvar (niche radius in the decision space)

1: F = F1 ∪ F2 ∪ ...Fk =Nondominated sort (Q)
2: P = F1 ∪ F2 ∪ ...Fk−1

3: N ′ = N − |P |
4: while |Fk| > N ′ do
5: for all xi ∈ Fk do
6: calculate fDS(xi) according to σobj and σvar

7: end for
8: xmax = arg max

xi∈Fk

fDS(xi)

9: Fk = Fk/{xmax}
10: end while
11: P = P ∪ Fk

12: return P

In Algorithm 1, the solutions in the candidate solution set, Q, are first sorted
to form several nondominated fronts, F1∪F2∪...Fk, where k in Fk is the minimal
value such that |F1|+ |F2|+ ...|Fk| > N (N is the population size) (Line 1). This
procedure is similar to that in NSGA-II [1]. Then, the first Fk−1 nondominated
fronts are combined into the new population, P (Line 2). N ′ = N − |P | is the
number of solutions remain to be chosen into P (Line 3). While |Fk| > N ′, the
double-sharing function, fDS , of each solution in Fk is calculated as follows (Line
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6):

fDS(xi) =
∑

xj∈Fk

Shobj(i, j) + Shvar(i, j) (1)

In this formulation, Shobj(i, j) = max{0, 1 − dobj(i, j)/σobj} and Shvar(i, j) =
max{0, 1− dvar(i, j)/σvar}, where dobj(i, j) and σobj are the Euclidean distance
between xi and xj and the niche radius in the objective space, respectively, and
dvar(i, j) and σvar have the similar meanings in the decision space. Then, the
solution with the maximum value of the double-sharing function, xmax, is deleted
from Fk (Line 9). Finally, the remaining solutions in Fk (where |Fk| = N ′) are
merged into P (Line 11).

Note that the settings of σobj and σvar are non-trivial. Generally, the higher
dimension of the objective (decision) space and the smaller population size, the
larger value of σobj (σvar). If σobj (σvar) is too large (e.g. larger than the distance
between any pair of solutions), boundary solutions are more likely to be selected.
Conversely, if σobj (σvar) is too small (e.g. smaller than the distance between any
pair of solutions), then the solutions to be discarded are selected at random as
the double-sharing function would assign zero to every solution. In both of the
above situations, the algorithm would encounter diversity maintenance issues.
In this study, since it is easy to choose the above values for polygon-based prob-
lems, we handle them as pre-specified fixed parameters. Developing a method to
adaptively tune σobj and σvar is an interesting future work.

It can be seen from Algorithm 1 and Eq. (1) that solutions located in sparse
regions either in the objective space or in the decision space are preferred. A
solution that is very close to others in the objective (decision) space but far away
from others in the decision (objective) space still has a chance to be selected.
This means that DNEA has a great potential to maintain diversity in both the
objective and decision spaces.

In the following section, we investigate the performance of DNEA on the
polygon-based problems to demonstrate its effectiveness. We also test two vari-
ants of DNEA as competing algorithms. The first is termed as DNEAobj, where
any Shvar is set to zero. This means that DNEAobj only has the ability to main-
tain diversity in the objective space. In this situation, DNEAobj is almost equal
to NPGA. Conversely, setting Shobj to zero, the second is termed as DNEAvar,
which only focuses on diversity in the decision space.

4 Experiments

In this section, three types of polygon-based problems are first introduced. Then,
the competing algorithms and the parameter settings are given. Finally, the per-
formance of the competing algorithms are empirically evaluated and discussed.

4.1 Polygon-Based Problems

We adopt three types of polygon-based problems with 3 and 4 objectives in the
experiments. There are four polygons in each problem. The details of them are
described as follows.
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Type I: The first type is a very basic one, where all the polygons have the
same shape and size. The vertexes of triangles in the 3-objective problem of
Type I are

{A1 = (20, 30),B1 = (30, 10),C1 = (10, 10),
A2 = (80, 30),B2 = (90, 10),C2 = (70, 10),
A3 = (80, 90),B3 = (90, 70),C3 = (70, 70),
A4 = (20, 90),B4 = (30, 70),C4 = (10, 70)}.

AiBiCi, i = 1, 2, 3, 4 is the ith triangle. The three objectives to be minimized are
formulated as follows:

f1(x) = min{d(x,Ai), i = 1, 2, 3, 4}
f2(x) = min{d(x,Bi), i = 1, 2, 3, 4}
f3(x) = min{d(x,Ci), i = 1, 2, 3, 4}

(2)

where d(x,X) is the Euclidean distance from a solution x to X (X is a vertex) in
the decision space. Similarly, the objectives of the 4-objective problem of Type I
can be defined. There are four rectangles with size of 20× 20 in the 4-objective
problem. Each polygon in these problems is a Pareto optimal region, and all the
regions are mapped to the same Pareto front. Finding a uniformly distributed
solution set in a polygon will lead to a well distributed approximate Pareto front.

Type II: The vertexes of polygons in Type II are the same as those in Type I.
The difference is that d(x,X) is transformed into d(x,X)0.01 in the objectives in
Type II. By such transformation, uniformly distributed solutions in the objective
space are actually nonuniformly distributed in the decision space, and vice versa.
By using the problems in Type II, we intend to investigate the behavior of each
competing algorithm when the diversities in the objective and decision spaces
are inconsistent.

Type III: For the problems in Type III, the size of polygons sequentially
increases. To be specific, the vertexes of triangles in the 3-objective problem in
Type III are

{A1 = (20, 30),B1 = (30, 10),C1 = (10, 10),
A2 = (80, 30.02),B2 = (90.01, 10),C2 = (69.99, 10),
A3 = (80, 90.2),B3 = (90.1, 70),C3 = (69.9, 70),
A4 = (20, 92),B4 = (31, 70),C4 = (9, 70)}.

The vertexes in the 4-objective problem are

{A1 = (10, 30),B1 = (30, 30),C1 = (30, 10),D1 = (10, 10),
A2 = (69.99, 30.01),B2 = (90.01, 30.01),C2 = (90.01, 9.99),D2 = (69.99, 9.99),
A3 = (69.9, 90.1),B3 = (90.1, 90.1),C3 = (90.1, 69.9),D3 = (69.9, 69.9),
A4 = (9, 91),B4 = (31, 91),C4 = (31, 69),D4 = (9, 69)}.

For the problems in Type III, only the first polygon is the true Pareto optimal
region and all the other polygons are local optimal regions. This means that any
solution located in the other polygons is dominated by a solution in the first
polygon. By testing each competing algorithm on the problems in Type III, we
expect to observe that whether the algorithm is trapped into the local optimal
regions while maintaining diversity in the decision space.
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4.2 Competing Algorithms and Parameter Settings

Besides the proposed DNEA and its two variants, DNEAobj and DNEAvar, we
applied three other algorithms, i.e., DN-NSGA-II, NSGA-II, and MOEA/D, to
each test problem 30 times using the following specifications:

– Population size: 210 and 220 for 3- and 4-objective problems, respectively
– Population initialization: random values in [0, 100] for each decision variable
– Termination condition: 300 generations
– Crossover probability: 1.0 (SBX with ηc = 20)
– Mutation probability: 0.5 (Polynomial mutation with m = 20)
– Niche radius in DNEA and its variants: σobj = 0.06 and σvar = 0.02
– Neighborhood size in MOEA/D: 10% of the population size
– Crowding factor in DN-NSGA-II: half of the population size

It is interesting to note that the competing algorithms can be classified into
three categories. The first one is DNEA, which is designed to maintain diversity
in both the objective and decision spaces. The second one includes DNEAobj

and the classic multi-objective optimizers, i.e., NSGA-II and MOEA/D. They
only focus on diversity maintenance in the objective space. On the contrary,
DNEAvar and DN-NSGA-II fall into the third one.

4.3 Results and Discussions

In this part, the performances of the competing algorithms are evaluated and
discussed on the three types of polygon-based problems.

Results on Type I: In Fig. 1, we show the average number of solutions in
the Pareto optimal regions achieved by each competing algorithms over 30 runs.
In Fig.1(a), (b), (d) and (e), ‘1st’ represents the average number of solutions in
the polygon which contains the most solutions in each run. ‘2nd’ represents that
in the polygon which contains the second most solutions, and ‘3rd’ and ‘4th’
have the similar meanings. ‘avg’ indicates the average number of solutions in
all the four polygons. Fig. 2 shows the final solution sets of each algorithm in a
typical run in the decision space. In the typical run, the number of solutions in
each polygon is the nearest to the average number over 30 runs. Note that the
results in most other runs are similar to the typical one.

From Fig. 1(a) and (d), we can see that the difference between ‘1st’ and
‘4th’ obtained by DNEAobj, NSGA-II, and MOEA/D is larger than the others,
which means that most of the solutions achieved by these algorithms concentrate
on one or two polygons. This can be also visually observed from the distribu-
tion of solutions in the decision space in Fig. 2. Thus, DNEAobj, NSGA-II, and
MOEA/D fail to get multiple Pareto optimal solution sets. On the other hand,
the difference between ‘1st’ and ‘4th’ obtained by DNEA, DNEAvar, and DN-
NSGA-II in Fig. 1 are relatively small. This suggests that the solutions are almost
equally assigned to each polygon, which can be also observed in Fig. 2. From
these observations, we can conclude that DNEA, DNEAvar, and DN-NSGA-II
have a good ability to maintain diversity in the decision space. It is worth noting
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Fig. 1. The average number of solutions in each polygon.
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Fig. 2. The final solution sets in the decision space on the polygon-based problem in
Type I (a-f and g-l show the results on the 3- and 4-objective problems, respectively).
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that the difference between ”1st” and ”4th” of DN-NSGA-II is a bit larger than
DNEA and DNEAvar in Fig. 1(a) and (d), and the distribution of solutions of
DN-NSGA-II is not as good as those of DNEA and DNEAvar in Fig. 2. This
indicates that the niche sharing method could perform better than the crowding
distance method in maintaining diversity.

Results on Type II: Similar to Fig. 2, Fig. 3 shows the results of each
competing algorithm on the polygon-based problems in Type II.
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Fig. 3. The final solution sets in the decision space on the polygon-based problem in
Type II (a-f and g-l show the results on the 3- and 4-objective problems, respectively).

The results in Fig. 1(b) and (e) are similar to those in Fig. 1(a) and (d),
however, the average numbers of solutions in the polygons achieved by DNEA
and DNEAobj are smaller than the others. We speculate that the reason is the
deterioration of the convergence ability for the complicated Pareto fronts by the
enhancement of the diversification ability in those algorithms. From Fig. 3, we
can see that only DNEA find all vertexes of all polygons. The solutions achieved
by DNEAobj, NSGA-II, and MOEA/D only concentrate on several vertexes due
to the same reason when handling with the problems in Type I. The behaviors
of DNEAvar and DN-NSGA-II are much the same as those in Fig. 2, since they
only consider diversity in the decision space.

For further investigation, we show the non-dominated solutions in the objec-
tive space obtained by each algorithm on the 3-objective problem in the typical
run in Fig. 4. It can be seen from Fig. 4 that the solutions obtained by DNEAvar

and DN-NSGA-II focus on small areas. This observation suggests that they can-
not maintain a good diversity in the objective space for the problems in Type II,
although the distribution of their solutions looks uniform in the decision space
in Fig. 3. The solutions obtained by DNEA, DNEAobj, NSGA-II, and MOEA/D
are widely spread in the objective space. However, as we have observed in Fig. 3,
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only DNEA can achieve solution sets with large diversity in the decision space.
Similar results can be also observed on the 4-objective problem, where they are
not presented due to space limits.
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Fig. 4. The Pareto fronts on the 3-objective polygon-based problem in Type II shown
by the 3D coordinates.

From the above-mentioned observations, we can conclude that maintaining
diversity in both the objective and decision spaces is necessary for solving the
problems in Type II. This motivates us to think that when the requirements of
diversity in the objective and decision spaces are conflict, should we consider
them equally, or make a trade-off between them? The proposed DNEA in this
study belongs to the former way. Developing methods in the latter way will be
a interesting future work.

Results on Type III: In the same manner as in the previous two sub-
sections, the results on the polygon-based problems in Type III are shown in
Figs. 1(c) and (f) and 5. The meaning of the results in Fig. 1(c) and (f) is a
little different from those in Figs. 1(a), (b), (d), and (e). In Fig. 1(c) and (f),
‘1st’, ‘2nd’, ‘3rd’, and ‘4th’ indicate the first, second, third, and fourth polygon,
respectively (only the first polygon is the true Pareto optimal solution set). Since
the polygons in the Type III problems have different sizes, it is better to count
the solutions in each polygon separately.

It can be seen from Figs. 1(c) and (f) and 5 that most of the solutions achieved
by DNEAobj, NSGA-II, and MOEA/D locate in the first and second polygons.
Especially, almost all of the solutions achieved by MOEA/D are in the first
polygon. The reason is that the scarlarizing function employed in MOEA/D
provides a much larger selection pressure towards the Pareto front than the
Pareto dominance criterion used in the other algorithms. The behaviors of DNEA
and DNEAvar are nearly the same, where the solutions are equally assigned to
the first three polygons. The solutions achieved by DN-NSGA-II also locate in
the first three polygons, however, the number of solutions in the second polygon
is smaller than those in the first and third polygons for unknown reason.

These observations indicate that maintaining diversity in the decision space
can lead to more solutions in the local optimal areas than that in the objective
space. However, such algorithms like DNEA, DNEAvar, and DN-NSGA-II are not
trapped in these local optimal areas. They can also provide a well-distributed
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Fig. 5. The final solution sets in the decision space on the polygon-based problem in
Type III (a-f and g-l show the results on the 3- and 4-objective problems, respectively).

Pareto optimal solution set in the first polygon (i.e., the true Pareto optimal
solution set). The question is that whether the solutions in the local optimal
areas are necessary in a real-world application. If such solutions are actually
needed for the decision maker, how to achieve them is another question. For
example, the solutions in the fourth polygon may be needed in some situations,
however, none of the algorithms can achieve them. Controlling the number of
solutions in each local optimal region is another interesting future work.

5 Conclusions

In this paper, we proposed a double-niched evolutionary algorithm, i.e., DNEA,
for multi-modal multi-objective optimization. In DNEA, a double sharing func-
tion is employed to estimate the density of a solution in both the objective and
decision spaces. We introduced three types of polygon-based problems and ap-
plied DNEA, its variants, DN-NSGA-II, NSGA-II, and MOEA/D to them. In
computational experiments, we have the following observations: (1) Diversity
maintenance in the decision space is necessary to find multiple Pareto optimal
solution sets. (2) Diversities in the objective and decision spaces should be si-
multaneously considered if they are inconsistent. (3) Promoting diversity in the
decision space leads to more solutions in local Pareto optimal regions. Besides
the future works mentioned in Subsection 4.3, balance between convergence and
diversity in the decision space is certainly interesting for our future research.
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