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Abstract—This is the supplementary material for Adapting
Reference Vectors and Scalarizing Functions by Growing Neural
Gas to Handle Irregular Pareto Fronts. This supplementary
material provides (1) the further comparisons among DEA-GNG
and nine other algorithms, (2) the complexity analysis of DEA-
GNG, and (3) the further investigations on the behavior of DEA-
GNG.

I. FURTHER COMPARISONS AMONG DIFFERENT
ALGORITHMS

A. Comparison Using Hypervolume

In Table I, we show the results of hypervolume (HV) [1]
and the performance scores obtained by DEA-GNG, DEA-
GNG*, A-NSGA-III [2], RVEA* [3], AdaW [4], MOEA/D-
LTD [5], MOEA/D-AWA [6], MOEA/D-SOM [7], MOEA/D-
PaS [8], and MOEA/D [9] on 34 test problems listed in
Table I in the main body of the paper. The average HV
value and the corresponding performance score [1] of each
algorithm on each test problem are given in Table I. A
darker tone corresponds to a larger performance score. For
each test problem, the performance score of an algorithm
is the number of the comparative algorithms which perform
significantly worse than it according to HV. Moreover, we give
the average performance score of each algorithms over all
the test problems at the bottom of Table I. Note that when
calculating HV in this study, a solution set obtained by an
algorithm is normalized based on the true Pareto front, and
the reference point is set to (1.1, . . . , 1.1).
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We can see from Table I that DEA-GNG generally performs
best according to the average performance score, followed by
the other algorithms. This general observation is similar to
that from the results of IGD+ in the main body of the paper.
One can notice that there are some inconsistencies between the
results of HV and IGD+ on some test problems. That is, an
algorithm may have a small (or large) performance score on
a test problem according to HV or IGD+ but have a large (or
small) one according to the other indicator. One reason is that
the evaluation by HV depends on the setting of the reference
point when the PF shape is irregular [10]. Another reason is
that HV and IGD+ have different preferences on evaluation.
Although both HV and IGD+ measure the convergence and
diversity performance of a solution set simultaneously, IGD+

evaluates the performance of a solution set based on the true
Pareto front, while HV does not. The IGD+ value is calculated
by the distance between the reference points on the true Pareto
front and the solutions set. A solution set with a larger HV
does not necessarily closer to the reference points, and vice
versa. This phenomenon implies that the obtained solution sets
are not comparable in terms of the dominance relation of sets.
In other words, different decision makers may have different
preference to them, which is quite natural. Please refer to [11]
for a detailed discussion.

B. Visualized Comparison

In this subsection, we visualize the final solution sets
obtained by different algorithms in a single run on Scaled
DTLZ2-3 and DTLZ7-8 as well as the true PFs in Figs. 1 and
2, respectively. This particular run is associated with the result
which is the closest to the mean IGD+ value in Table II in
the main body of the paper. Note that the objective values of
the solutions have been normalized based on the true PF. The
reason of choosing these test problems is that we would like
to observe the behavior of different algorithms in handling a
relatively simple PF (i.e., SDTLZ2-3’s) and a complicated one
(i.e., DTLZ7-8’s), respectively.

From Fig. 1 we can see that the solution sets obtained
by DEA-GNG, DEA-GNG*, AdaW, and MOEA/D-LTD are
well distributed according to the PF shape. MOEA/D has a
normalization issue. For the others, the adaptation strategy
more or less affects the uniformity of solutions.
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TABLE I
RESULTS OF HV.

 

HV AdaW
MOEA/D-

LTD

Scaled DTLZ2-2 4.204E-1 9 4.203E-1 8 4.178E-1 1 4.201E-1 7 4.200E-1 5 4.193E-1 2 4.200E-1 5 4.070E-1 0 4.194E-1 3 4.195E-1 4

Scaled DTLZ2-3 7.428E-1 5 7.426E-1 5 7.378E-1 2 7.401E-1 4 7.429E-1 5 7.452E-1 7 7.428E-1 5 6.511E-1 0 7.342E-1 1 7.373E-1 2

Scaled DTLZ2-5 1.140E+0 3 1.129E+0 2 1.275E+0 9 1.189E+0 6 1.261E+0 7 1.270E+0 8 1.159E+0 4 8.719E-1 1 1.151E+0 4 7.207E-1 0

Scaled DTLZ2-8 1.688E+0 4 1.686E+0 4 1.910E+0 9 1.501E+0 2 1.882E+0 7 1.884E+0 7 1.694E+0 4 1.510E+0 2 1.084E+0 1 6.964E-1 0

Convex DTLZ2-2 8.715E-1 8 8.713E-1 7 8.689E-1 1 8.707E-1 4 8.705E-1 4 8.698E-1 2 8.716E-1 8 8.632E-1 0 8.705E-1 4 8.702E-1 2

Convex DTLZ2-3 1.277E+0 2 1.278E+0 2 1.277E+0 2 1.278E+0 4 1.278E+0 5 1.277E+0 2 1.278E+0 5 1.275E+0 0 1.278E+0 6 1.275E+0 0

Convex DTLZ2-5 1.596E+0 2 1.596E+0 2 1.608E+0 6 1.609E+0 7 1.601E+0 4 1.606E+0 6 1.609E+0 8 1.556E+0 0 1.603E+0 5 1.589E+0 1

Convex DTLZ2-8 2.128E+0 2 2.126E+0 2 2.138E+0 5 2.140E+0 6 2.133E+0 2 2.139E+0 5 2.143E+0 9 2.143E+0 8 2.111E+0 1 2.073E+0 0

Minus-DTLZ2-2 9.912E-1 7 9.912E-1 7 9.866E-1 3 9.909E-1 6 9.863E-1 2 9.883E-1 4 9.911E-1 7 9.471E-1 0 9.894E-1 5 9.844E-1 1

Minus-DTLZ2-3 7.215E-1 6 7.210E-1 6 6.967E-1 2 7.218E-1 6 7.211E-1 6 6.895E-1 1 7.088E-1 4 6.605E-1 0 7.014E-1 3 7.082E-1 4

Minus-DTLZ2-5 1.959E-1 9 1.700E-1 6 1.134E-1 4 1.803E-1 8 1.699E-1 6 7.411E-2 1 1.010E-1 3 3.669E-2 0 7.314E-2 1 1.581E-1 5

Minus-DTLZ2-8 9.887E-3 9 7.831E-3 6 3.612E-3 1 8.392E-3 8 3.775E-3 1 4.530E-3 3 2.691E-3 0 7.822E-3 6 5.395E-3 4 6.049E-3 5

 DTLZ2BZ-2 5.712E-1 7 5.706E-1 5 5.684E-1 1 5.713E-1 8 5.683E-1 1 5.703E-1 4 5.714E-1 9 5.571E-1 0 5.705E-1 4 5.690E-1 3

 DTLZ2BZ-3 7.026E-1 6 7.014E-1 6 6.964E-1 3 7.001E-1 5 7.048E-1 7 6.942E-1 3 7.037E-1 6 5.993E-1 0 6.698E-1 1 6.854E-1 2

 DTLZ2BZ-5 8.106E-1 8 7.831E-1 6 7.507E-1 4 7.961E-1 6 1.095E+0 9 6.863E-1 3 6.182E-1 2 4.698E-1 1 3.346E-1 0 7.720E-1 5

 DTLZ2BZ-8 1.391E+0 6 1.301E+0 4 1.495E+0 8 1.308E+0 4 1.502E+0 8 1.091E+0 2 1.256E+0 3 7.378E-1 1 3.901E-1 0 1.452E+0 7

DTLZ5-3 2.664E-1 8 2.665E-1 9 2.622E-1 4 2.656E-1 7 2.654E-1 6 2.562E-1 2 2.624E-1 4 2.540E-1 1 2.557E-1 1 2.457E-1 0

DTLZ5-5 1.136E-1 1 2.296E-2 0 7.269E-2 0 1.782E-1 7 1.227E-1 2 1.467E-1 4 1.536E-1 6 2.010E-1 8 1.467E-1 4 2.031E-1 8

DTLZ5-8 7.722E-2 2 3.908E-5 0 5.805E-3 0 2.015E-1 5 6.836E-2 2 2.077E-1 6 2.142E-1 8 2.078E-1 7 7.964E-2 2 2.233E-1 8

DTLZ7-2 5.444E-1 6 5.444E-1 6 5.444E-1 6 5.349E-1 4 5.416E-1 5 5.239E-1 3 5.442E-1 6 2.008E-1 0 4.321E-1 1 4.624E-1 2

DTLZ7-3 5.636E-1 7 5.612E-1 6 5.538E-1 4 5.648E-1 8 5.673E-1 9 5.572E-1 5 5.456E-1 3 4.168E-1 0 4.220E-1 1 5.196E-1 2

DTLZ7-5 5.335E-1 7 4.985E-1 5 4.547E-1 4 5.281E-1 7 5.288E-1 7 5.217E-1 6 2.681E-1 1 3.299E-1 2 3.501E-1 3 1.391E-1 0

DTLZ7-8 5.154E-1 9 4.259E-1 6 3.733E-1 2 3.507E-1 2 3.548E-1 2 5.011E-1 8 3.561E-1 2 1.108E-1 1 4.267E-1 6 5.726E-3 0

WFG1-2 7.970E-1 3 7.967E-1 2 8.193E-1 7 7.683E-1 1 8.067E-1 3 7.894E-1 2 8.355E-1 9 8.225E-1 8 5.899E-1 0 8.056E-1 3

WFG1-3 1.249E+0 4 1.250E+0 4 1.256E+0 9 1.250E+0 4 1.254E+0 8 1.242E+0 3 1.250E+0 4 1.143E+0 1 1.053E+0 0 1.209E+0 2

WFG1-5 1.598E+0 6 1.578E+0 3 1.603E+0 8 1.464E+0 0 1.599E+0 6 1.603E+0 8 1.581E+0 5 1.569E+0 2 1.589E+0 4 1.521E+0 1

WFG1-8 2.140E+0 6 2.126E+0 4 2.141E+0 6 1.811E+0 0 2.131E+0 5 2.139E+0 6 2.143E+0 6 2.036E+0 2 2.079E+0 3 1.764E+0 0

WFG2-2 7.651E-1 7 7.647E-1 6 7.647E-1 7 7.639E-1 5 7.611E-1 2 7.634E-1 4 7.650E-1 6 7.582E-1 1 7.624E-1 3 7.400E-1 0

WFG2-3 1.233E+0 5 1.233E+0 5 1.234E+0 5 1.230E+0 2 1.237E+0 9 1.227E+0 2 1.229E+0 2 1.206E+0 1 1.232E+0 5 1.194E+0 0

WFG2-5 1.561E+0 5 1.540E+0 3 1.584E+0 6 1.556E+0 4 1.587E+0 7 1.594E+0 9 1.580E+0 6 1.442E+0 0 1.445E+0 0 1.488E+0 2

WFG2-8 2.128E+0 5 2.127E+0 5 2.128E+0 5 2.057E+0 2 2.109E+0 4 2.130E+0 5 2.125E+0 5 2.074E+0 3 7.463E-1 0 1.951E+0 1

Polygon-based Problem-3 3.794E-1 6 3.800E-1 6 3.737E-1 4 3.795E-1 6 3.835E-1 9 3.585E-1 2 3.746E-1 4 3.446E-1 0 3.489E-1 1 3.602E-1 3

Polygon-based Problem-5 2.009E-1 8 1.999E-1 7 1.881E-1 5 1.630E-1 0 2.004E-1 7 1.609E-1 0 1.656E-1 3 1.701E-1 4 1.632E-1 2 1.892E-1 5

Polygon-based Problem-8 6.899E-2 9 6.869E-2 8 6.442E-2 6 4.458E-2 1 6.826E-2 7 5.308E-2 2 3.742E-2 0 6.233E-2 5 6.164E-2 4 5.553E-2 3

Average Performance Score

MOEA/D-

PaS
MOEA/D

5.794 4.794 4.382 4.588 5.265 4.029

DEA-GNG DEA-GNG* A-NSGA-III RVEA*
MOEA/D-

AWA

MOEA/D-

SOM

4.765 1.912 2.441 2.382

In Fig. 2, the solution sets are shown by parallel coordinates.
Please refer to [12] for how to read many-objective solution
sets in parallel coordinates. We can observe from Fig. 2 that
DEA-GNG, DEA-GNG*, A-NSGA-II, RVEA*, and AdaW
can maintain good diversity, while the others cannot. More-
over, DEA-GNG*, A-NSGA-II, RVEA*, and AdaW obtained
a number of solutions whose objective values are larger than 1.
These solutions are not very close to the true PF. Therefore,
only DEA-GNG obtained a solution set with good diversity
and convergence.

C. Friedman rank test for the Results of IGD+ and HV

In this subsection, we use the Friedman rank test [13] to
determine whether there is a significant difference among the
comparative algorithms for the results of IGD+ and HV. The
null hypothesis is rejected at a significant level of 0.05.

Tables II and III show the Friedman rank test for the results
of IGD+ and HV, respectively. We can see from Tables II
and III that our DEA-GNG has the highest ranking, and the
p-values show that there is a significant difference among the
algorithms for results of both IGD+ and HV.

In addition, since the Friedman rank test only can detect
significant differences over the whole multiple comparison,
we use a post-hoc test to obtain a p-value which determines

the degree of rejection of the hypothesis between each pair
of algorithms. The p-value of every hypothesis is obtained
through the conversion of the rankings computed by using a
normal approximation. Tables IV and V show the pairwise
hypotheses analyzed by the post-hoc test for the results of
IGD+ and HV, respectively. The p-values in Table IV show
that the IGD+ results obtained by DEA-GNG are significantly
different from those of the other algorithms expect for DEA-
GNG* and AdaW. The p-values in Table IV show that the
HV results obtained by DEA-GNG are significantly different
from the other algorithms expect for DEA-GNG*, AdaW,
MOEA/D-AWA, and REVA*.

II. COMPLEXITY ANALYSIS

DEA-GNG includes two models: the DEA-based optimiza-
tion model and the GNG-based learning model. Table VI lists
the time complexity of each operator in these models and the
total time complexity in one generation. Note that N is the
population size.

In one generation, the time complexities of the operators
in the DEA-based optimization model are the same to those
in [14]. The total time complexity of this model is O(N2).
Please refer to [14] for the details. In the GNG-based learning
model, the time complexity of input signal archive update is



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION SUPPLEMENT 3

0
0.20

0.40

f
1

0.2

0.60.2

0.4

0.4

f
2

f 3 0.6

0.80.6

0.8

0.8 1

1

1

(a) True Pareto Front
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(b) DEA-GNG
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(c) DEA-GNG*
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(d) A-NSGA-III
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(e) RVEA*
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(f) AdaW
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(g) MOEA/D-LTD
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(h) MOEA/D-AWA
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(i) MOEA/D-SOM
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(j) MOEA/D-PaS
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(k) MOEA/D

Fig. 1. The true Pareto front and the the final solution sets obtained by different algorithm in a single run on Scaled DTLZ2-3.
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(a) True Pareto Front
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(b) DEA-GNG
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(c) DEA-GNG*
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(d) A-NSGA-III
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(e) RVEA*
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(f) AdaW
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(g) MOEA/D-LTD
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(h) MOEA/D-AWA
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(i) MOEA/D-SOM
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(j) MOEA/D-PaS
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(k) MOEA/D

Fig. 2. The true Pareto front and the the final solution sets obtained by different algorithm in a single run on DTLZ7-8.
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TABLE II
FRIEDMAN RANK TEST FOR THE RESULTS OF IGD+

 

Algorithms Ranking

1 DEA-GNG 8.5882

2 AdaW 7.7353

3 DEA-GNG* 6.6471

4 MOEA/D-AWA 5.5294

5 RVEA* 5.5147

6 MOEA/D-LTD 5.4706

7 A-NSGA-III 5.4118

8 MOEA/D 4.0882

9 MOEA/D-SOM 3.4118

10 MOEA/D-PaS 2.6029

p -value 9.039E-11

TABLE III
FRIEDMAN RANK TEST FOR THE RESULTS OF HV

 

Algorithms Ranking

1 DEA-GNG 7.5294

2 AdaW 6.8824

3 MOEA/D-AWA 6.4706

4 DEA-GNG* 6.2647

5 RVEA* 6.1765

6 A-NSGA-III 6.0294

7 MOEA/D-LTD 5.3824

8 MOEA/D-PaS 3.7353

9 MOEA/D 3.5588

10 MOEA/D-SOM 2.9706

p -value 6.184E-11

the same as that of environmental selection, i.e., O(N2). When
the input signal archive size and the population size are in
the same order of magnitude, the time complexity of GNG
update is O(N2) according to [15]. The time complexities
of reference vector and scalarizing function adaptations are
O(N2) and O(N), respectively. Therefore, the total time
complexity of the GNG-based learning model is also O(N2).
To sum up, the total time complexity of DEA-GNG in one
generation is O(N2). This implies that although the GNG-
based learning model brings additional computation costs, the
total time complexity of DEA-GNG is the same to those of
most other MOEAs, such as NSGA-III [14].

III. FURTHER INVESTIGATIONS ON THE BEHAVIOR OF
DEA-GNG

In this section, we investigate three important parameters,
NS , ε, and α to observe their effects on the behavior of
DEA-GNG and thus to provide guidelines for setting them.
In addition, we visualize the obtained GNG networks and
the solution sets on the test problems with 3 objectives for
a intuitive understanding.

A. Sensitivity Analysis of NS

We applied DEA-GNG to Scalded DTLZ2 with 3 and 8
objectives with different settings of |NS |. The results are

TABLE IV
PAIRWISE HYPOTHESES ANALYZED BY THE POST-HOC TEST FOR THE

RESULTS OF IGD+

 

Hypothesis  p -value

1 DEA-GNG  vs. MOEA/D-PaS 3.6130E-16

2 DEA-GNG  vs. MOEA/D-SOM 1.7968E-12

3 AdaW  vs. MOEA/D-PaS 2.7621E-12

4 DEA-GNG  vs. MOEA/D 8.8892E-10

5 AdaW  vs. MOEA/D-SOM 3.9124E-09

6 DEA-GNG*  vs. MOEA/D-PaS 3.6428E-08

7 AdaW  vs. MOEA/D 6.8128E-07

8 DEA-GNG*  vs. MOEA/D-SOM 1.0536E-05

9 DEA-GNG  vs. A-NSGA-III 1.5200E-05

10 DEA-GNG  vs. MOEA/D-LTD 2.1795E-05

11 DEA-GNG  vs. RVEA* 2.8443E-05

12 DEA-GNG  vs. MOEA/D-AWA 3.1059E-05

13 MOEA/D-AWA  vs. MOEA/D-PaS 6.7390E-05

14 RVEA*  vs. MOEA/D-PaS 7.3307E-05

15 MOEA/D-LTD  vs. MOEA/D-PaS 9.4143E-05

16 A-NSGA-III  vs. MOEA/D-PaS 1.3072E-04

17 DEA-GNG*  vs. MOEA/D 4.9278E-04

18 A-NSGA-III  vs. AdaW 1.5550E-03

19 AdaW  vs. MOEA/D-LTD 2.0416E-03

20 RVEA*  vs. AdaW 2.4943E-03

21 AdaW  vs. MOEA/D-AWA 2.6645E-03

22 MOEA/D-AWA  vs. MOEA/D-SOM 3.9285E-03

23 RVEA*  vs. MOEA/D-SOM 4.1856E-03

24 MOEA/D-LTD  vs. MOEA/D-SOM 5.0513E-03

25 A-NSGA-III  vs. MOEA/D-SOM 6.4568E-03

26 DEA-GNG  vs. DEA-GNG* 8.2047E-03

27 MOEA/D-PaS  vs. MOEA/D 4.3104E-02

28 MOEA/D-AWA  vs. MOEA/D 4.9691E-02

29 RVEA*  vs. MOEA/D 5.2065E-02

30 MOEA/D-LTD  vs. MOEA/D 5.9767E-02

31 A-NSGA-III  vs. MOEA/D 7.1482E-02

32 DEA-GNG*  vs. A-NSGA-III 9.2521E-02

33 DEA-GNG*  vs. MOEA/D-LTD 1.0913E-01

34 DEA-GNG*  vs. RVEA* 1.2306E-01

35 DEA-GNG*  vs. MOEA/D-AWA 1.2800E-01

36 DEA-GNG*  vs. AdaW 1.3835E-01

37 DEA-GNG  vs. AdaW 2.4542E-01

38 MOEA/D-SOM  vs. MOEA/D-PaS 2.7069E-01

39 MOEA/D-SOM  vs. MOEA/D 3.5693E-01

40 A-NSGA-III  vs. MOEA/D-AWA 8.7271E-01

41 A-NSGA-III  vs. RVEA* 8.8851E-01

42 A-NSGA-III  vs. MOEA/D-LTD 9.3615E-01

43 MOEA/D-LTD  vs. MOEA/D-AWA 9.3615E-01

44 RVEA*  vs. MOEA/D-LTD 9.5209E-01

45 RVEA*  vs. MOEA/D-AWA 9.8402E-01

shown in Fig. 3. We chose Scaled DTLZ2 since it has a
relatively simple PF among the test problems, and it would
be easy to observe the difference when changing NS .

We can see from Fig. 3 that the average IGD+ value slightly
decreases while the runtime increases as NS increases. This
observation suggests that a larger value of NS will improve
the performance of DEA-GNG while consuming much more
computation costs. However, the differences in the IGD+

values are small. This means that DEA-GNG shows a robust
performance under different settings of NS . In this study,
we set NS to MN in the comparison with state of the art,
where DEA-GNG obtained satisfying results with acceptable
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TABLE V
PAIRWISE HYPOTHESES ANALYZED BY THE POST-HOC TEST FOR THE

RESULTS OF HV

Hypothesis p -value

1 DEA-GNG  vs. MOEA/D-SOM 5.3567E-10

2 DEA-GNG  vs. MOEA/D 6.4012E-08

3 AdaW  vs. MOEA/D-SOM 9.9789E-08

4 DEA-GNG  vs. MOEA/D-PaS 2.3802E-07

5 MOEA/D-AWA  vs. MOEA/D-SOM 1.8758E-06

6 AdaW  vs. MOEA/D 6.0100E-06

7 DEA-GNG*  vs. MOEA/D-SOM 7.2578E-06

8 RVEA*  vs. MOEA/D-SOM 1.2664E-05

9 AdaW  vs. MOEA/D-PaS 1.8215E-05

10 A-NSGA-III  vs. MOEA/D-SOM 3.1059E-05

11 MOEA/D-AWA  vs. MOEA/D 7.3307E-05

12 MOEA/D-AWA  vs. MOEA/D-PaS 1.9534E-04

13 DEA-GNG*  vs. MOEA/D 2.2878E-04

14 RVEA*  vs. MOEA/D 3.6419E-04

15 DEA-GNG*  vs. MOEA/D-PaS 5.7191E-04

16 A-NSGA-III  vs. MOEA/D 7.6686E-04

17 RVEA*  vs. MOEA/D-PaS 8.8598E-04

18 MOEA/D-LTD  vs. MOEA/D-SOM 1.0221E-03

19 A-NSGA-III  vs. MOEA/D-PaS 1.7831E-03

20 DEA-GNG  vs. MOEA/D-LTD 3.4567E-03

21 MOEA/D-LTD  vs. MOEA/D 1.3017E-02

22 MOEA/D-LTD  vs. MOEA/D-PaS 2.4897E-02

23 DEA-GNG  vs. A-NSGA-III 4.1080E-02

24 AdaW  vs. MOEA/D-LTD 4.1080E-02

25 DEA-GNG  vs. RVEA* 6.5408E-02

26 DEA-GNG  vs. DEA-GNG* 8.5016E-02

27 MOEA/D-LTD  vs. MOEA/D-AWA 1.3835E-01

28 DEA-GNG  vs. MOEA/D-AWA 1.4932E-01

29 DEA-GNG*  vs. MOEA/D-LTD 2.2952E-01

30 A-NSGA-III  vs. AdaW 2.4542E-01

31 RVEA*  vs. MOEA/D-LTD 2.7950E-01

32 MOEA/D-SOM  vs. MOEA/D-PaS 2.9769E-01

33 RVEA*  vs. AdaW 3.3641E-01

34 DEA-GNG  vs. AdaW 3.7822E-01

35 A-NSGA-III  vs. MOEA/D-LTD 3.7822E-01

36 DEA-GNG*  vs. AdaW 4.0028E-01

37 MOEA/D-SOM  vs. MOEA/D 4.2309E-01

38 A-NSGA-III  vs. MOEA/D-AWA 5.4797E-01

39 AdaW  vs. MOEA/D-AWA 5.7497E-01

40 RVEA*  vs. MOEA/D-AWA 6.8876E-01

41 DEA-GNG*  vs. A-NSGA-III 7.4864E-01

42 DEA-GNG*  vs. MOEA/D-AWA 7.7919E-01

43 MOEA/D-PaS  vs. MOEA/D 8.1008E-01

44 A-NSGA-III  vs. RVEA* 8.4127E-01

45 DEA-GNG*  vs. RVEA* 9.0436E-01

TABLE VI
TIME COMPLEXITY OF DEA-GNG IN ONE GENERATION

Operator Complexity

Mating Selection O (N )

Offspring Reproduction O (N )

Environmental Selection O (N
2
)

Total of DEA O (N
2
)

O (N
2
)

O (N
2
)

O (N
2
)

Input Signal Archive Update

GNG Update

Reference Vector Adaptation

Scalarizing Function Adaptation O (N )
Total of GNG O (N

2
)

Total of DEA-GNG O (N
2
)
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Fig. 3. The results on Scaled DTLZ2 under different settings of NS .
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Fig. 4. The results on DTLZ7 under different settings of ε.

computation costs.

B. Sensitivity Analysis of ε

We used DTLZ7 with 2, 3, 5, and 8 objectives to investigate
the effect of ε. DTLZ7 has a relatively complex PF. The best θ
value for each reference vector could be different. Fig. 4 shows
the results on DTLZ7 under different settings of ε, where 3
Obj (×10) represents the IGD+ results on 3-objective DTLZ7
which should be multiplied by 10. 2 Obj, 5 Obj (×50), and 8
Obj (×100) have similar meanings.

From Fig. 4, we can see that subtracting ε leads to a better
IGD+ results than not in all cases. The good IGD+ results
were obtained in a wide range of values of ε (i.e., [0.05, 0.2])
for DTLZ7 with 2, 3, 5, and 8 objectives. This observation
shows the robust performance of DEA-GNG. Furthermore, ε =
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Fig. 5. The final reference vectors and the corresponding θ values when ε
is set to 0.05π in a typical run on 2-objective DTLZ7. The triangles and the
circles represents the reference vectors from R′

u (i.e., uniformly generated
reference vectors) and R′

node (i.e., nodes in the GNG network), respectively.
In (a), the shaded region is the true PF. In (b), the reference vectors are sorted
in ascending order according to their first objective values (i.e., f1), and the
triangles on the top mean that θ is ∞.

0.05π is a slightly better setting for DTLZ7 with 2 and 3
objectives, while ε = 0.15π is a slightly better setting for
DTLZ7 with 5 and 8 objectives. This implies that we can
increase the value of ε to improve the algorithm’s performance
when solving MaOPs.

In addition, in Fig. 5 we present the final reference vectors
and the corresponding θ values when ε is set to 0.05π in
a typical run on 2-objective DTLZ7 for an intuitive under-
standing of the proposed scalarizing function adaptation. In
Fig. 5 (a), the triangles and the circles represents the reference
vectors from R′

u (i.e., uniformly generated reference vectors)
and R′

node (i.e., nodes in the GNG network), respectively. The
shaded region is the true PF. In Fig. 5 (b), the reference vectors
are sorted in ascending order according to their first objective
values (i.e., f1), and the triangles on the top mean that θ is
∞. We can observe from Fig. 5 that the proposed scalarizing
function adaptation can adjust θ according to the PF shape.

C. Sensitivity Analysis of α

We used DTLZ7 with 3 objectives to investigate the effect
of α. Similar results were also obtained on other test problems,
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0.026

0.030

0.034

0 0.2 0.4 0.6 0.8

IG
D

+

α

Fig. 6. The results on DTLZ7 under different settings of α.

which are not provided here. Fig. 6 shows the results of DEA-
GNG on DTLZ7 under different settings of α.

From Fig. 6 we can see that the algorithm achieves good
performance when α is in the range of [0.1, 0.7]. Either a too
large value (larger than 0.7) or a too small value (smaller
than 0.1) of α clearly deteriorates the performance. This
implies that (1) when the algorithm approaches the end of
the search process, no change to the reference vectors and
the scalarizing functions can improve the performance by
making the algorithm to focus on exploitation; (2) stopping the
GNG-based learning model too early results in inappropriate
reference vectors and scalarizing functions. Since we usually
cannot know when the GNG network can well represent the
true PF shape during the search process, we set α to be a
relatively small value (i.e., 0.1) in this study. It is worth noting
that AdaW [4] also does not change the weight vectors during
the last 10% generations for the same reason.

D. Visualization of the obtained GNG networks

Fig. 7 shows the obtained GNG networks at the end of
evolution on all the test problems with 3 objectives in a single
run to visually investigate the performance of DEA-GNG. In
each sub-figure, the circles and lines are the nodes and the
edges in the GNG network, respectively, and the shaded region
is the true PF. We can see from Fig. 7 that the GNG networks
are very close to the true PF shapes.
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