
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Adapting Reference Vectors and Scalarizing
Functions by Growing Neural Gas to Handle

Irregular Pareto Fronts
Yiping Liu, Member, IEEE, Hisao Ishibuchi, Fellow, IEEE, Naoki Masuyama, Member, IEEE,

and Yusuke Nojima, Member, IEEE

Abstract—The performance of decomposition-based multi-
objective evolutionary algorithms often deteriorates clearly when
solving multi-objective optimization problems with irregular
Pareto fronts. The main reason is the improper settings of
reference vectors and scalarizing functions. In this study, we
propose a decomposition-based multi-objective evolutionary al-
gorithm guided by a growing neural gas network, which learns
the topological structure of the Pareto front. Both the reference
vectors and the scalarizing functions are adapted based on the
topological structure to enhance the evolutionary algorithm’s
search ability. The proposed algorithm is compared with eight
state-of-the-art optimizers on 34 test problems. The experimental
results demonstrate that the proposed method is competitive in
handling irregular Pareto fronts.

Index Terms—Decomposition-based multi-objective evolution-
ary optimization, growing neural gas, irregular Pareto front.

I. INTRODUCTION

MULTI-objective optimization problems (MOPs) are
commonly seen in a variety of disciplines. They involve

multiple objectives to be optimized simultaneously. Without
loss of generality, an MOP can be formulated as follows:

minf(x) = min(f1(x), . . . , fM (x)),
s.t. x ∈ S ⊂ Rn,

(1)

where x is an n-dimensional decision vector in the search
space S, fm(x) is the m-th objective to be minimized
(m = 1, ...,M), and M is the number of objectives. When
M > 3, this problem is often called a many-objective
optimization problem (MaOP). Due to the conflicting nature
of objectives, usually an MOP has no single optimal solution
which simultaneously optimizes all objectives. It has a set of
trade-off solutions, known as the Pareto optimal solution set

This work was supported by National Natural Science Foundation of China
(Grant No. 61876075 and 61803192), the Program for Guangdong Intro-
ducing Innovative and Enterpreneurial Teams (Grant No. 2017ZT07X386),
Shenzhen Peacock Plan (Grant No. KQTD2016112514355531), the Science
and Technology Innovation Committee Foundation of Shenzhen (Grant No.
ZDSYS201703031748284), the Program for University Key Laboratory of
Guangdong Province (Grant No. 2017KSYS008), and JSPS KAKENHI (Grant
No. 19K20358).

Y. Liu, N. Masuyama, Y. Nojima are with Department of Computer
Science and Intelligent Systems, Graduate School of Engineering, Osaka
Prefecture University, Sakai, Osaka 599-8531, Japan. (yiping0liu@gmail.com,
masuyama@cs.osakafu-u.ac.jp, nojima@cs.osakafu-u.ac.jp)

H. Ishibuchi is with Shenzhen Key Laboratory of Computational In-
telligence, University Key Laboratory of Evolving Intelligent Systems of
Guangdong Province, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China.
(hisao@sustech.edu.cn) (Corresponding Author)

(PS). The image of the PS in the objective space is called the
Pareto front (PF).

Over the past two decades, a number of Multi-Objective
Evolutionary Algorithms (MOEAs) have been proposed,
which have been proven successful in solving MOPs. Gen-
erally, MOEAs can be classified into three categories, i.e.,
Pareto-, indicator-, and decomposition-based MOEAs.

Among others, decomposition-based MOEAs are very com-
petitive, where an MOP is decomposed into a number of
single-objective problems based on a scalarizing function and
a set of well distributed reference vectors. A population is
guided to search towards the PF in the directions specified
by the reference vectors. Decomposition-based MOEAs have
distinct advantages due to the above-mentioned key feature.
For example, they converge fast and have the capability of
solving MaOPs owing to the strong selection pressure towards
the PF [1]–[4]. They also have good exploitation ability by
incorporating local search operators [5], [6]. In addition, they
are able to maintain diversity in the decision space by working
with niche methods [7], [8].

In decomposition-based MOEAs, the distribution of ob-
tained solutions is determined by both the reference vectors
and the scalarizing function. In most existing studies, the
reference vectors are predefined and uniformly distributed in
the entire objective space, and the same scalarizing function
is used for all reference vectors. Under this specification, a
decomposition-based MOEA works well on an MOP with a
simple PF. For example, MOEA based on Dominance and
Decomposition (MOEA/DD) [9] is very powerful in solving
DTLZ1 to DTLZ4 [10]. We regard a PF like those of DTLZ1
to DTLZ4 as a regular PF, if (1) the geometric shape of the PF
is simple, such as a hyperplane or concave hypersphere; (2)
any positive vector emanated from the ideal point intersects
with the PF; (3) the range of every objective on the PF is
almost the same.

An MOP is unlikely to have a regular PF unless it is par-
ticularly man-made to meet the above conditions. Therefore,
a real-world MOP usually has an irregular PF, which can
be highly non-linear, disconnected, degenerated, incomplete,
badly-scaled, and/or high-dimensional. For example, due to
the complicated non-linear relationship between objectives, the
PF of a carbon fiber drawing process optimization problem
is disconnected into several parts [11]. Another example is a
financial portfolio management problem [12] where the ranges
of objective values on the PF are quite different, which makes

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2

the PF badly scaled. More real-world MOPs with irregular
PFs were reported, such as a job shop scheduling problem
[13] and a water resource management problem [14]. When
solving such an MOP, the performance of a decomposition-
based MOEA often deteriorates clearly [1]. One reason is
the inconsistency between the distribution of the reference
vectors and the PF shape. If the PF is irregular, some reference
vectors may have no intersections with the PF. Consequently,
the obtained solution by those reference vectors could be
very close to each others (or close to some other reference
vectors), which decreases the diversity of the obtained solution
set. Another reason is the choice of an improper scalarizing
function for each reference vector, which results in solutions
far away from the PF (poor convergence) or the reference
vectors (poor diversity).

To address these issues, in this study we propose a
Decomposition-based multi-objective Evolutionary Algorithm
guided by Growing Neural Gas (DEA-GNG). In the pro-
posed method, we employ a GNG network [15] to learn the
topological structure of the PF. GNG adaptively organizes a
topological network by a set of nodes and edges. The edges
connect the nodes and represent the relationships among them.
Inputting the known solutions as signals, the network grows
as the population evolves, and it reflects the topology of
the PF more and more closely. A node in GNG indicates a
position on the PF, while the edges emanated from the node
provide the curvature information of the position. Thus we can
use them to adapt the reference vectors and the scalarizing
functions, where a different scalarizing function is used for
each reference vector.

This study has the following contributions:

• A reference vector adaptation strategy based on GNG is
proposed, where the nodes in GNG are adopted as refer-
ence vectors and combined with another set of uniformly
distributed reference vectors to guide the evolution. Using
these reference vectors, the evolutionary algorithm is ca-
pable of searching for Pareto optimal solutions according
to the PF shape while having a good exploration ability
in the entire objective space.

• A method to automatically choose a scalarizing function
for each reference vector is proposed. The curvature
information of the PF around each node (reference vector)
from GNG can be estimated by the edges emanated
from the node. Then, a scalarizing function that can well
balance convergence and diversity is obtained according
to the angels between the reference vector and the edges.

• A variant of GNG is proposed to solve some issues
arising from multi-objective evolutionary optimization
and to learn the topology of the PF more accurately.

The remainder of this paper is organized as below. In
Section II, related studies on multi-objective evolutionary
optimization are reviewed for the completeness of the pre-
sentation. The motivation of this work is also elaborated.
The proposed DEA-GNG is described in detail in Section
III. Section IV presents the experimental design and results.
Section V concludes the paper and provides future research
directions.

II. PRELIMINARIES

A. Multi-Objective Evolutionary Optimization

A large number of MOEAs have been proposed and can be
categorized into Pareto-, indicator-, and decomposition-based
algorithms.

Pareto-based MOEAs, such as Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [16] and Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [17], adopt the Pareto
dominance- and the density-based criteria to select non-
dominated solutions with good diversity. However, they gener-
ally fail in solving MaOPs efficiently. The main reason is that
the proportion of non-dominated solutions in the population
considerably rises as the number of objectives increases, and
then the density-based criterion plays a key role in the envi-
ronmental and mating selection phases. However, the density-
based criterion often select a solution far away from the PF
due to its low density value in the high-dimensional objective
space. To improve their ability in solving MaOPs, many
attempts have been reported, e.g., dominance area control [18],
Pareto partial dominance [19], ε-dominance [20], preference
order ranking [21], and fuzzy Pareto dominance [22]. These
methods actually introduce a kind of preference to Pareto
dominance, which would lead the population converge to
certain regions of the PF [23]. As a result, they may be not
suitable to search for the entire PF.

Indicator-Based Evolutionary Algorithms (IBEAs) [24]
adopt a performance indicator to evaluate the fitness of each
solution. Solutions with the best indicator values are preferred.
Hypervolume (HV) is one of the most widely-used indicators
in IBEAs. To reduce computational complexity for calculating
HV when solving MaOPs, HypE [25] uses a Monte Carlo
simulation to estimate HV. However, the reference point for
calculating HV is still difficult to specify for an irregular PF.
Recently, the R2 indicator [26], [27] was proposed to estimate
HV with much lower complexity. It requires a set of reference
vectors as in decomposition-based algorithms.

MOEA/D [28] is one of the most famous decomposition-
based algorithms. In MOEA/D, uniformly distributed refer-
ence vectors are first generated. Then, the weighted sum
approach, the Tchebycheff approach, or the penalty-based
boundary intersection (PBI) approach is used to decompose
the MOP into a number of single-objective subproblems.
Uniformly distributed reference vectors with the same scalar-
izing function would appreciably decrease the performance of
decomposition-based algorithms on irregular PFs, which have
been shown in a recent study [1]. Currently, there exist two
research directions to address this issue.

One is to adapt scalarizing functions. There are only a
few studies along this direction. In [29], the weighted sum
approach and the Tchebycheff approach are automatically
chosen according to the number of neighbors of a solution.
Later, the same authors proposed to simultaneously use the
two approaches in MOEA/D [30]. In [31], a Pareto adaptive
scalarizing method named MOEA/D-PaS was proposed to
approximate the optimal p value in the Lp scalarizing function.
In this method, several candidate p values are pre-defined.
Then, for each reference vector, the one that can select a

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 3

solution closest to the reference vector is chosen. Following
the same idea, a method to adaptive parameter θ in the PBI
function was proposed in [32]. MOEA/D using a learning-
to-decompose method (MOEA/D-LTD) was proposed very
recently in [33]. A Gaussian process (GP)-based model is
employed to learn the PF shape and to adjust parameters in a
modified PBI function.

The other is to adapt reference vectors. In MOEA/D with
adaptive weight adjustment (MOEA/D-AWA) [34], the most
crowded reference vectors are periodically removed while new
reference vectors are generated in sparse regions. NSGA-
III [2] is an improved version of NSGA-II, which employs
uniformly distributed reference points (vectors) for diversity
maintenance. In [35], an adaptive version of NSGA-III (A-
NSGA-III) is presented, where additional reference vectors
are generated around the one crowded by solutions. In a
modified version of reference vector guided evolutionary algo-
rithm (RVEA) named RVEA* [3], adaptive weight update is
performed by randomly generating reference vectors according
to obtained solutions. An MOEA based on hierarchical decom-
position (MOEA/HD) was proposed in [36]. In MOEA/HD,
the subproblems are layered into different hierarchies, and the
search directions of lower-hierarchy subproblems are adap-
tively adjusted according to the higher-hierarchy search results.
In [11], a clustering-based adaptive MOEA (CA-MOEA) was
introduced, where candidate solutions are clustered in envi-
ronmental selection. Each cluster center can be regarded as a
reference point (vector). The solution closest to each reference
point is selected. An approach to adapt the weights (reference
vectors) (AdaW) was proposed in [37]. In AdaW, diverse non-
dominated solutions are maintained in an archive to guide the
addition and deletion of reference vectors. The results showed
that AdaW is able to obtain good diversity on various Pareto
front shapes. In the aforementioned MOEA/D-LTD [33], the
GP-based model is also used to generate the reference vectors.
In addition, some other methods to adapt reference vectors
based on the current population were proposed [4], [38]–[40].
Particularly, MOEA/D with self organized map-based weight
(reference) vectors (MOEA/D-SOM) was recently proposed in
[41]. SOM [42] is a classic topological clustering algorithm.
The nodes in the SOM network trained by the previous and
current populations indicates a position on the PF. Thus they
are adopted to adapt reference vectors in MOEA/D-SOM.

In this study, we propose to use GNG to adapt the reference
vectors and the scalarizing functions, as both adaptations are
important for handling irregular PFs. GNG is also a topological
clustering algorithm. It has more advantages than SOM in
handling irregular PFs which will be explained in the next
subsection.

B. Motivation
GNG is able to learn the topological structure in a given

set of input signals (vectors) adaptively. The network of GNG
consists of (1) a set of nodes which accumulate input signals
and (2) a set of edges among pairs of nodes which represent
the relationships among connected nodes. In this study, they
are denoted as Rnode and Vedge, respectively. The main steps
of GNG are given as follows [15]:

Step 0. (Initialization) Start with two connected nodes at
random positions r1 and r2. Note that the age of a
new generated edge and the error variable of a new
generated node are 0.

Step 1. Input a signal ξ.
Step 2. Find the nearest node ra and the second-nearest node

rb to ξ.
Step 3. Increment the age of all edges emanating from ra.
Step 4. Increase the error variable of ra by adding the squared

distance of ra and ξ:

error(ra) = error(ra) + ‖ra − ξ‖2. (2)

Step 5. Move ra and its direct topological neighbors, rnbk , k =
1, . . . ,K, (i.e., the nodes connected with ra by an
edge) towards ξ by learning rates εa and εnb, respec-
tively, of the total distance:

ra = ra + εa(ξ − ra),
rnbk = rnbk + εnb(ξ − rnbk).

(3)

Step 6. If ra and rb are connected by an edge, set the age
of this edge to zero. If such an edge does not exist,
create it.

Step 7. Remove edges with an age larger than agemax. If this
results in nodes having no emanating edges, remove
them as well.

Step 8. If the number of signals input so far is a multiple of a
parameter λ and the number of nodes has not reached
to maximum, insert a new node as follows:
• Determine the node rmax

1 with the largest error
variable.

• Insert a new node rnew halfway between rmax
1 and

its neighbor rmax
2 with the largest error variable:

rnew = 0.5(rmax
1 + rmax

2) (4)

• Insert edges connecting rnew with rmax
1 and rmax

2 ,
and remove the original edge between rmax

1 and
rmax

2 .
• Decrease the error variables of rmax

1 and rmax
2 by

multiplying them by a constant α. Set the error
variable of rnew to be the same as that of rmax

1 .
Step 9. Decrease all error variables by multiplying them by a

constant δ.
Step 10. If a stopping criterion (e.g., reaching the maximum

number of iterations) is not yet fulfilled, go to Step 1.
Please refer to [15] for details of GNG. Although GNG

has been widely used in the information modeling due to its
superior flexibility and adaptability [43], [44], there exist few
studies on using GNG in MOEAs. For example, in [45], [46],
a model-building GNG is proposed to generate offspring for
multi-objective estimation of distribution algorithms.

In this study, we adopt GNG to guide the evolution in
decomposition-based MOEAs for the first time. A population
in an MOEA is expected to approximate the PF and be well
scattered over the PF as the search goes on [47]. Then, we
can assume the known solutions as input signals sampled from
the PF with noise. A GNG network trained by these known
solutions will provide the topological information of the PF

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 4

more and more closely as the search goes on, which can be
employed to adapt the reference vectors and the scalarizing
function of each reference vector.

A SOM network also consists of nodes and edges. Besides
the aforementioned MOEA/D-SOM, it has been frequently
applied to multi-objective evolutionary optimization. In [48],
SOM is used as a distribution probability model to generate
new solutions. A method to visualize Pareto optimal solutions
based on SOM is proposed in [49]. A self-organizing MOEA
is presented by detecting relationships between solutions in the
decision space in [50]. Actually, GNG has more advantages
than SOM for handling irregular PFs due to the following
reasons.

One is that GNG has a much faster convergence to low
distortion errors than SOM. This is important to reduce the
computation cost, since we need to continuously update GNG
or SOM as the population evolves. Fig. 1 shows the networks
of GNG and SOM when using uniformly sampled solutions on
the PF of 3-objective Minus-DTLZ2 [1] and DTLZ7 [10] as
input signals, respectively, where the dots are the input signals,
the circles are the nodes in GNG or SOM, and the lines are
the edges among the nodes. We can see that GNG can find
a topological structure that closely reflects the PF shape of
Minus-DTLZ2 and DTLZ7 at the 30th iteration (i.e., inputting
all the signals 30 times) in Figs. 1 (a) and (d), respectively,
while SOM cannot in Figs. 1 (b) and (e). SOM converges at
the 100th (200th) iteration in Fig. 1 (c (f)). One reason for
the slow convergence of SOM is that all nodes of SOM are
randomly generated in the initialization phase, which may be
far away from the input signals. In contrast, nodes in GNG
are gradually generated according to the positions of the input
signals. Another reason is the predefined connections (edges)
between nodes in SOM. Two connected nodes may be far
away from each other. We can see a number of such pairs of
nodes in Figs. 1 (b) and (e). Making them closer takes many
iterations.

The predefined structure of SOM is also the other reason
for its disadvantages in handling an irregular PF. In the
SOM network, the number of dimensions, the number of
nodes in each dimension, and the connections between nodes
should be predetermined. However, the GNG network does not
require such specifications. These specifications will reduce
the algorithm’s flexibility in handling irregular PFs:
• The dimension of an irregular PF is usually unknown.

If the dimension of the SOM network is different from
that of the PF, SOM cannot learn a good topological
structure of the PF. On the contrary, the dimension of
the GNG network is automatically determined according
to the input signals.

• The setting of population size is not arbitrary for SOM.
For example, if we set the number of nodes in each
dimension in a 2-D SOM network to be a and b, the
total number of nodes is a× b. In a decomposition-based
MOEA, the population size is usually set equal to the
number of weight vectors to enhance diversity. Thus when
we use all the nodes in SOM as the reference vectors,
the population size is a × b. For GNG, we can set the
maximum number of nodes to an arbitrary value. The

number of nodes usually reaches the maximum number
in a well-trained GNG network.

• SOM tries to represent separate clusters by a single
network, whereas GNG does not try to connect sepa-
rate clusters into a single network. That is, there is no
edge connecting separate clusters in GNG. This is very
important for handling disconnected PFs. Let us check
Fig. 1 (d), where the network in GNG is partitioned into
four sub-networks1 according to the PF shape of DTLZ7.
SOM performs poorly even at the 100th iteration in Fig. 1
(e). It finally converges at the 200th iteration in Fig. 1 (f).
However, we can observe that there are still some nodes
not related to the input signals.

For these reasons, we propose to use GNG to guide the
evolution by adapting the reference vectors and the scalarizing
function for each eference vector in decomposition-based
MOEAs. In the next section, we will introduce the proposed
DEA-GNG by answering the following questions.
• How to get the input signals to train GNG? There are a

huge number of solutions generated during the evolution.
It is impractical and inefficient to input all of them to
GNG as signals.

• Is there any flaw of GNG when using it in decomposition-
based MOEAs?

• How to adapt the reference vectors based on the obtained
GNG network? Can we directly adopt the nodes in GNG
as the reference vectors?

• How to choose a proper scalarizing function for each
reference vector based on the topological information
from GNG?

III. PROPOSED METHOD

Our DEA-GNG can be divided into two parts. One is the
DEA-based optimization model. The other is the GNG-based
learning model. First, we present the general framework of
DEA-GNG in Subsection III-A. Then, the key techniques in
the two models are described in detail in Subsections III-B
and III-C to III-F, respectively. Finally, in Subsection III-G,
we discuss the similarities and differences between DEA-GNG
and existing methods.

A. General Framework

Algorithm 1 presents the overall framework of the proposed
DEA-GNG.

Lines 1 to 5 in Algorithm 1 are the initialization phase.
g = 0 is the count value of generation (line 1). The population
P is randomly initialized in the decision space (line 2).
Function Ideal Point returns the minimum objective values
as the estimated ideal point z∗ = (z∗1 , . . . , z

∗
M) (line 3). Ru is

a set of uniformly distributed reference vectors whose size is
equal (or similar) to the population size N . R is the reference
vectors to be used in selection (line 4). The input signal archive
AS with the maximum size NS is initialized to be an empty
set. (line 5).

1The term “sub-network” means that any node in a sub-network has no
connection with any node in the other sub-networks.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

(a) GNG on Minus-DTLZ2 at 30th iteration

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

(b) SOM on Minus-DTLZ2 at 30th iteration

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

(c) SOM on Minus-DTLZ2 at 100th iteration

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

(d) GNG on DTLZ7 at 30th iteration

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

(e) SOM on DTLZ7 at 100th iteration

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

(f) SOM on DTLZ7 at 200th iteration

Fig. 1. The networks of GNG and SOM using solutions uniformly sampled on the true PF of Minus-DTLZ2 and DTLZ7 as the input signals, respectively.
The dots are the input signals, the circles are the nodes in GNG or SOM, and the lines are the edges among the nodes.

Algorithm 1 General Framework
Require: P (Population), N (Population Size), AS (Input

Signal Archive), NS (Maximum Size of AS), Gmax (Max-
imum Generation)

1: g = 0;
2: P = Initialize (P);
3: z∗ = Ideal Point (P);
4: R = Ru = Uniform Reference Vector Generation (N);
5: AS = ∅;
6: while the stopping criterion is not met, i.e., g < Gmax do
7: P ′ = Mating Selection (P);
8: P ′′ = Reproduction (P ′);
9: z∗ = Ideal Point (P ′′ ∪ {z∗});

10: if g < (1− α)×Gmax then
11: AS = Input Signal Archive Update

(AS ∪ P ′′, R,NS , z
∗);

12: [Rnode, Vedge]= GNG Update (AS);
13: R = Reference Vector Adaptation

(Ru, Rnode, AS);
14: FS = Scalarizing Function Adaptation

(R, Vedge);
15: end if
16: P = Environmental Selection (P ∪P ′′, R, FS , N, z∗);
17: g = g + 1;
18: end while
19: return P

In the DEA-based optimization model, there are three
operations iterated until the stopping criterion defined by the
maximum number of generations Gmax is satisfied (line 6):
(1) parents P ′ are selected by mating selection (line 7); (2)
offspring P ′′ are generated by a reproduction operator (line 8);
and (3) new population is obtained by environmental selection
(line 16). In addition, z∗ is updated once the offspring are
produced (line 9). We will describe environmental and mating
selection in Subsection III-B.

There are four operators in the GNG-based learning model:
(1) input signal archive update (line 11), (2) GNG update (line
12), (3) reference vector adaptation (line 13), and (4) scalar-
izing function adaptation (line 14). They will be explained in
detail in Subsections III-C to III-F to answer the four questions
in Subsection II-B, respectively. Note that these operators are
not employed in the last α×Gmax generations (line 10). This
is because that we expect the evolution to focus on exploitation
by keeping the reference vectors and the scalarizing functions
unchanged. α is set to 0.1 in this study. Please refer to the
supplementary material for the investigation on the effect of
α.

B. Environmental and Mating Selection

The environmental selection in DEA-GNG is presented in
Algorithm 2. It is similar to that in NSGA-III [2]. The main
difference is that the reference vectors R = {r1, . . . , r|R|}

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 6

Algorithm 2 Environmental Selection
Require: P (Population), N (Population Size), P ′′ (Off-

spring), R = {r1, . . . , r|R|} (Reference Vectors), FS =
{fS1 , . . . , fS|R|} (Scalarizing functions), z∗ (Ideal Point)

1: Use non-dominated sorting [16] to divide P ∪ P ′′ into
{F1, . . . , Fi, . . . }, where the index i in Fi shows the
minimum value of i such that |F1|+ · · ·+ |Fi| ≥ N ;

2: P = F1 ∪ · · · ∪ Fi−1;
3: Set z′ to be the maximum objective values in F1;
4: Normalize every solution in P ∪Fi by f ′(x) = f(x)−z∗

z′−z∗ ;
5: for all x ∈ P ∪ Fi do
6: rmin = arg minr∈R ∠(f ′(x), r);
7: Associate x to rmin;
8: end for
9: For each rj ∈ R (j = 1, . . . , |R|), denote the number of

associated solutions in P as cj . Set C = {1, . . . , |R|};
10: For each rj ∈ R (j = 1, . . . , |R|), denote the associated

solution subset in Fi as ∆j ;
11: while |P | < N do
12: J = arg minj∈C cj ;
13: if ∆J = ∅ then
14: Remove J from C;
15: else
16: if cJ = 0 then
17: xmin = arg minx∈∆J

fSJ (x);
18: Move xmin from ∆J to P ;
19: else
20: Randomly move a solution from ∆J to P ;
21: end if
22: cJ = cJ + 1;
23: end if
24: end while
25: return P

and the scalarizing functions FS = {fS1 , . . . , fS|R|} are both
adapted based on the GNG network. Note that in line 4 (also
in Algorithm 3, line 12), v1./v2 is the vector with elements
v1
m/v

2
m, where m denotes the mth dimension. In line 6,

∠(f ′(x), r) is the angle between f ′(x) and r.
We use the tournament selection as the mating selection,

where two solutions are randomly chosen and compete un-
der two selection criteria: The primary criterion is the non-
dominated ranking and the secondary criterion is the cj value
of the corresponding reference vector. That is, the solution in
the lower front with the smaller cj is selected.

C. Input Signal Archive Update

A large number of solutions are generated during the
evolution. Among them, non-dominated solutions are close
to the true PF. Therefore, we only use these solutions as
the input signals for training GNG. However, the number of
non-dominated solutions is still huge especially when solving
MaOPs. It is inefficient to use all of them as the input signals.

The input signal archive update method is similar to the
environmental selection in Algorithm 2, where P and N
are replaced by AS and NS , respectively. There are two

differences. The first is that i in Fi is set to 1 in line 1. That
is, we only reserve solutions in the first non-dominated front.
The other is to modify lines 16 to 21 as follows:

1: if cJ = 0 then
2: xmin = arg minx∈∆J

∠(f ′(x), rJ);
3: Move xmin from ∆J to P ;
4: else
5: if cJ < cmax then
6: xmax = arg maxx∈∆J

∠(f ′(x), rJ);
7: Move xmax from ∆J to P ;
8: else
9: Randomly move a solution from ∆J to P ;

10: end if
11: end if
Note that here in line 5, cmax is a predefined integer. We will
explain its setting later.

The reasons for the above modifications are as follows:
(1) We select the solution closest to the reference vector

according to the angle between them to maintain the
distribution according to the current reference vectors.
(lines 1 to 3)

(2) We also select the farthest solutions (i.e., the solutions with
the largest angles to the reference vector) to diversify AS .
(lines 5 to 7)

(3) Selecting too many farthest solutions may result in some
solutions very close to each other. For example, when solv-
ing a bi-objective optimization problem, if we select more
than one farthest solution for each reference vector, there
could be some solutions close to each other. Therefore,
we only select M −1 farthest solutions (M is the number
of objectives). Considering the closest solution which has
been selected in line 3, cmax is set to be M .

(4) If both the closest and farthest solutions have been se-
lected, we randomly select solutions to further promote
diversity. (line 9)

Under these modifications, we can diversify AS while
maintaining the distribution according to the current reference
vectors. Although the modifications may decrease the unifor-
mity of signals in AS , the nodes of GNG are less dense and
thus more uniform than the input signals.

It is interesting to note that our method shares some
common ideas with the two-archive evolutionary algo-
rithm (called C-TAEA) recently proposed in [51]. C-TAEA
has the convergence- and diversity-oriented archives. The
convergence-oriented archive and the population in DEA-GNG
have similar selection criteria. Both the diversity-oriented
archive and the input signal archive in DEA-GNG attempt to
promote diversity while maintaining the current distribution of
solutions. Their difference is that the diversity-oriented archive
selects solutions with large constraint violation values to solve
a constrained MOP, whereas the input signal archive diversifies
solutions in the objective spaces to train the GNG network and
thus to handle an irregular PF.

D. GNG Update

Once AS is updated according to Subsection III-C, all the
signals (solutions) in AS will be input one time to update

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 7

GNG. Note that the signals are normalized into the range
of [0, 1] according to the maximum and minimum objective
values in AS before inputting. The maximum number of nodes
is set to N in this study.

In the early stage of evolution, the input signals in AS could
be vastly different even in successive generations, whereas
GNG will encounter issues when the input signals suddenly
change. In this situation, some nodes could never be winners
(closest to the signal) or neighbors of winners, since no signal
close to them will be input in the next generations. Then,
these nodes become useless and even misleading for adapting
reference vectors in the later stage of evolution.

Moreover, GNG has a strategy to remove nodes having
no emanating edges in Step 7 in Subsection II-B. When
handling an irregular PF, such isolated nodes may certainly
exist, since Pareto optimal solutions may locate there. Thus it
is unnecessary to remove them.

Taking the above reasons into account, we propose a variant
of GNG, where each node has a new property value called hit
point (HP). The HP of a new generated node in Steps 0 and 8
in Subsection II-B is full, i.e., HPmax. We make the following
modifications to the steps in Subsection II-B.
(1) In Step 2, after ra (the winner) and rb (the runner-up) are

determined, the winner restores its HP value to HPmax,
the HP of the runner-up is unchanged, and the other nodes
decrease their HP values by one (i.e., HP = HP− 1).

(2) In Step 7, the isolated nodes are not removed. Instead, the
dead nodes (i.e., the nodes with HP = 0) and the edges
emanated from them are removed.

With these improvements, GNG can learn the topological
structure of the PF more adaptively and accurately.

In this study, we set HPmax to 2|AS |. This indicates that
even if a node loses all input signals (i.e., loses |AS | times)
in one generation, it still has a chance to compete in the next
generation. However, if it fails |AS | times again in the next
generation, it will be eliminated.

E. Reference Vector Adaptation

As has been shown in Figs. 1 (a) and (d), the nodes
(Rnode) in GNG are well distributed according to the PF
shape. However, we cannot directly use these nodes as the
reference vectors in a decomposition-based MOEA due to the
following two issues. One is the coverage of the boundary of
the PF. Since GNG has a clustering nature, the nodes cannot
cover the boundary of PF, which indicates that the solutions
obtained by the guidance of the nodes also cannot. As a result,
the population may locate in a smaller and smaller area as
the evolution continues. The other is that the distribution of
the nodes in the early stage of the evolution could be quite
different from the true PF shape. If we use them as reference
vectors, the exploration ability of the decomposition-based
MOEA will decrease. Therefore, our reference vector adap-
tation method has two phases: expansion and combination,
which are presented in Algorithms 3 and 4 to address these
issues, respectively.

In Algorithm 3, we expand each sub-network Rq
node (q =

1, . . . , Q) of GNG according to the corresponding signals.

Algorithm 3 Expansion
Require: Rnode (Nodes in GNG), AS (Input Signal Archive)

1: Divide the GNG network into several (Q) sub-
networks according to the connections among nodes.
The nodes belong to each sub-network are denoted as
R1

node, . . . , R
Q
node, respectively;

2: A1
S = · · · = AQ

S = ∅;
3: for all ξ ∈ AS do
4: qmin = arg minq=1,...,Q d(ξ,Rq

node); . d(ξ,Rq
node) is

the shortest Euclidean distance between ξ and the nodes
in Rq

node.
5: Akmin

S = Akmin

S ∪ {ξ};
6: end for
7: R′node = ∅;
8: for q = 1, . . . , Q do
9: find the minimum and maximum values of Rq

node in
the objective space, denoted as f q

min,node and f q
max,node,

respectively;
10: find the minimum and maximum values of Aq

S in
the objective space, denoted as f q

min,AS
and f q

max,AS
,

respectively;
11: for all rnode ∈ Rq

node do
12:

r′node =(rnode − f q
min,node)./(f q

max,node − f q
min,node)

· (f q
max,AS

− f q
min,AS

) + f q
min,AS

;
(5)

13: R′node = R′node ∪ {r′node};
14: end for
15: end for
16: return R′node

First, each signal in AS is associated to its closest sub-
network, and we get the corresponding subset of signals Aq

S

(q = 1, . . . , Q) (lines 1 to 6). Then, after finding the ranges of
each Rq

node and Aq
S in the objective space (lines 8 to 10), all

the nodes are transformed by Eq. (5) (line 12). Finally, R′node

is formed by uniting all the transformed nodes (line 13).
By such expansion, the nodes in R′node can well cover the

boundary of AS . There could be some inconsistency between
the distributions of R′node and AS when the PF shape is
complex. However, the inconsistency can be neglected when
the sizes of R′node and AS are large. Fig. 2 illustrates how the
GNG network in Fig. 1 (d) is expanded. We can see that there
are four sub-networks in Fig. 1 (d). Each of them corresponds
to a disconnected region of the PF (i.e., a subset of the input
signals). In Fig. 2, each sub-network is expanded to cover its
corresponding input signal subset according to their maximum
and minimum objective values.

In Algorithm 4, we combine R′node with Ru by remov-
ing some reference vectors in Ru which are too close to
R′node. First, R′node is mapped to a hyperplane specified by
f1 + · · ·+fM = 1. The mapped R′node is denoted as Rp (lines
1 to 5). Note that Ru is regularly generated on the hyperplane
in this study. Next, we calculate the average Euclidean distance
dp between every pair of connected nodes in Rp (line 6). We
also calculate the minimum Euclidean distance du among the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 8

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

Fig. 2. Expanding each sub-network based on its corresponding input signals
in Fig. 1 (d) by Eq. (5).

Algorithm 4 Combination
Require: R′node (Transformed Nodes in GNG), Ru (Uni-

formly Distributed Reference Vectors)
1: Rp = ∅;
2: for all r′node ∈ R′node do
3: rp = r′node/

∑M
m=1 r

′
node,m; . map the nodes in

R′node on a hyperplane specified by f1 + · · ·+ fM = 1.
4: Rp = Rp ∪ {rp};
5: end for
6: calculate the average Euclidean distance between every

pair of connected nodes in Rp, denoted as dp;
7: find the minimum Euclidean distance between each pair

of the reference vectors in Ru, denoted as du;
8: dmin = min(dp, du);
9: R′u = Ru;

10: for all r′u ∈ R′u do
11: if d(r′u, Rp) < dmin then . d(r′u, Rp) is the shortest

Euclidean distance between r′u and the nodes in Rp.
12: R′u = R′u/{r′u};
13: end if
14: end for
15: return R = R′u ∪R′node

reference vectors in Ru (line 7). The threshold of removing
reference vectors in R′u (initialized to be equal to Ru) is the
smaller value between dp and du. If the Euclidean distance
between a reference vector in R′u and any node in Rp is
smaller than the threshold, it is removed (lines 10 to 14).
Finally, R = R′u ∪R′node is returned as the adapted reference
vectors for selection (line 15).

If dp is much smaller than du, it implies that the most nodes
in R′node are crowded in some small regions. Then we use dp
as the threshold, so that the the reference vectors in R′u which
are very close to R′node can be reserved, and the population
could have a better chance to spread by the guidance of the
reference vectors. On the other hand, a greater dp value than
du indicates that the number of nodes may be not enough (i.e.,
smaller than the population size). We adopt du as the threshold
to improve the uniformity in the entire objective space. We
show an example in Fig. 3 of combining the nodes in Fig. 2
with a set of uniformly distributed reference vectors, where

0
0.20

0.40

f
1

0.2

0.2 0.6

0.4

f
2

0.4

f 3

0.6

0.80.6

0.8

0.8 1

1

1

Fig. 3. Combining the nodes obtained by GNG in Fig. 2 and a set of
uniformly distributed reference vectors. The triangles and the circles represents
the reference vectors from R′

u (i.e., uniformly generated reference vectors)
and Rp (i.e., nodes mapped on a hyperplane), respectively.

the triangles and the circles are the reference vectors from R′u
and Rp, respectively.

Using the above combination, even if the nodes in R′node are
poorly distributed in the early stage, the reference vectors in
R′u will guide the population to search efficiently. One should
note that if we set both the sizes of Rnode and Ru equal
or similar to the population size N , the size of R′node ∪ R′u
will be greater than N in most cases. It suggests that in the
environmental selection no solution will be assigned to some
reference vectors in R′node ∪R′u, while every reference vector
must be assigned to a solution in some decomposition-based
MOEAs, such as MOEA/D. However, this creates no difficulty
since the environmental selection in the proposed method is
different from that in MOEA/D. If no Pareto optimal solution
is close to a reference vector, then no solution will be assigned
to the reference vector at the end of the evolution due to the
association in Algorithm 2.

F. Scalarizing Function Adaptation

The importance of choosing a proper scalarizing function
for each reference vector has been discussed in [31], [32].
A scalarizing function whose contour lines fit the PF shape
can enhance the algorithm’s search ability [52], [53]. Popular
scalarizing functions includes PBI [28] and Lp [31], [54]. Both
PBI and Lp have a parameter to generate different scalarizing
functions. The parameter is θ ∈ [0,∞] in PBI and p ∈ [1,∞]
in Lp. Different settings of θ or p result in different preferences
in selecting solutions. In general, a larger θ or p value prefers
better diversity while a smaller one is for better convergence.
The contour lines when θ ∈ [0, 1] in PBI are similar to those
when p ∈ [1,∞] in Lp. Compared to Lp, PBI can further
address diversity performance by setting θ ∈ (1,∞].

Therefore, in this study, we propose to tune θ in PBI to
specify an appropriate scalarizing function for each reference
vector obtained from GNG, i.e., R′node. The PBI scalarizing
function is formulated as

fS = d1 + θ · d2, (6)

where θ is the aforementioned parameter. Let y be the
projection of f(x) on the reference vector r. d1 is the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 9

f1

f2

0 θ=c θ=b θ=a

A

B

C

D

r

PF

Fig. 4. Different settings of θ in PBI. r is the reference vector. The dash
lines are the contour lines formed by PBI when θ is set to a, b, c, where
a < b < c. A, B, and D are Pareto optimal solutions, and C is a solution far
away from the PF.

distance between z∗ (i.e., the ideal point which is estimated
in Algorithm 1) and y, and d2 is the distance between f(x)
and y.

Let us see an example of different settings of θ in Fig. 4,
where r is the reference vector, the dash lines are the contour
lines formed by PBI when θ is set to a, b, c, where a < b < c.
A, B, and D are Pareto optimal solutions, and C is a solution
far away from the PF. When θ = a, A is most likely to
be obtained since it has the best scalarizing function value.
Actually, it is far from r, which implies a poor diversity
performance. If we set θ to c, C is evaluated as being
better than D, which will reduce the algorithm’s ability in
converging. For the reference vector r, θ = b is the best setting
among them to search for B which locates at the intersection
of r and the PF. We can see from this example that the
appropriate setting of θ depends on the shape of the PF. The
guidance of setting θ is to promote convergence under the
guarantee of diversity.

Taking advantage of the topological information from GNG,
we propose to estimate a proper θ value for each reference
vector (node) r by the following equation:

θ = max(0, 1/ tan(ζ ′)), (7)

where
ζ ′ = max(0, ζmin − ε),
ζmin = min ζk, k = 1, . . . ,K.

(8)

In Eq. (8), ε is a small positive value, and ζk (k = 1, . . . ,K)
is the angle between r and the kth edge vedge,k emanated from
it. vedge,k can be obtained by rnbk − r, where rnbk is the kth
topological neighbor of r.

The reason of subtracting ε from ζmin is that we expect
to slightly increase θ to counteract the distortion error and
to guarantee diversity. The distortion error comes from the
inconsistency between the GNG network and the true PF, since
the GNG network cannot exactly reflect the true PF shape with
a limited number of input signals and nodes in practice. ε can
be set to a relatively large value when the number of nodes is
not enough, especially when solving MaOPs. Please refer to
the supplementary material for the investigations on setting ε.

f1

f2

0

r

r1

r2

r'2

ζ1

ζ2

ζ'2

PF

θ

ε

Fig. 5. Estimating θ in PBI by Eqs. (7) and (8). r1 and r2 are the topological
neighbors of r in the GNG network. ζ1 (ζ2) is the angle between r and r1
(r2). r2 could be r′

2 when the number of nodes in GNG is not enough.

Fig. 5 shows an example, where r1 and r2 are the topologi-
cal neighbors of r. We can estimate θ by Eqs. (7) and (8) with
the angles, ζ1 and ζ2. The angle between r and the contour
lines formed by the scalarizing function is a bit smaller than
ζ1 and ζ2 due to ε. However, one can imagine that we may
have a neighbor node r′2 instead of r2. Then, we could obtain
an improper θ value if ε is not large enough. An intuitive
way to solve this issue is to increase the number of nodes.
Consequently, the distances between nodes will decrease, and
θ will be estimated more accurately.

For an isolated node in R′node, θ is set to ∞ to guarantee
diversity. In other words, the scalarizing function is d2. Any
other setting of θ will increase the chance of selecting solution
far away from the isolated node. Then we may lose this
isolated node and the solutions close to it in next generations.
In addition, the scalarizing function is also set to d2 for each
reference vector in R′u. There is no solution associated to each
reference vector in R′u in the previous generation. Using such a
setting of θ can select solutions closest to the reference vectors
in R′u and thus enhance the algorithm’s exploration ability in
the entire objective space. Note that it is technically possible
to tune p in Lp by the same manner of tuning θ by GNG,
which is an interesting future work.

G. Discussions

To handle irregular PFs, most existing decomposition-based
MOEAs adapt either the reference vectors or the scalarizing
functions. Different from these methods, DEA-GNG simul-
taneously adapts the reference vectors and the scalarizing
functions. Among these methods, MOEA/D-SOM [41] is the
most related method to DEA-GNG, where both GNG and
SOM can learn the topological structure of the PF using
a network which consists of nodes and edges. In addition,
MOEA/D-LTD [33] is another well-crafted method to adapt
both the reference vectors and the scalarizing functions. In the
following, we discuss the differences between DEA-GNG and
MOEA/D-SOM and those between DEA-GNG and MOEA/D-
LTD, respectively.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 10

1) DEA-GNG vs. MOEA/D-SOM: In addition to the dif-
ferences between GNG and SOM aforementioned in Subsec-
tion II-B, DEA-GNG and MOEA/D-SOM have the following
four main differences:

(1) The input signals in MOEA/D-SOM are obtained by
simply combining solutions in the last five generations.
This may decrease the diversity of the population. DEA-
GNG uses an archive to maintain good input signals.

(2) MOEA/D-SOM only uses the nodes as the reference
vectors, while DEA-GNG combines the nodes with a set
of uniformly distributed reference vectors as the reference
vectors.

(3) MOEA/D-SOM does not adapt the scalarizing functions.
One reason is that the edges in SOM are unable to
correctly provide the curvature information of the PF.

(4) In MOEA/D-SOM, the SOM network requires 100 itera-
tions for initialization and 10 iterations for update, which
consumes a lot of computational resources. In DEA-GNG,
the GNG network only requires one iteration for both
initialization and update.

2) DEA-GNG vs. MOEA/D-LTD: The differences between
DEA-GNG and MOEA/D-LTD fall into the following four
aspects:

(1) MOEA/D-LTD uses a GP-based model to learn the map-
ping from M − 1 objective functions to the remaining
objective function (M is the number of objectives). A
continuous hypersurface to approximate the PF can be
obtained based on the model. However, DEA-GNG uses
a GNG network to learn the topological structure of the
PF.

(2) To obtain the reference vectors, a large number of points
are sampled on the hypersurface in MOEA/D-LTD. Only
a small number of points are selected from the sampled
points based on their prediction variances of the GP model,
Pareto dominance relations, and density values. In DEA-
GNG, the reference vectors are obtained by expanding the
nodes in the GNG network and combining them with a
set of uniformly distributed reference vectors.

(3) In MOEA/D-LTD, the disconnection of the PF is not
considered when adapting the scalarizing functions. In
DEA-GNG, there is no edge connecting sub-networks,
where each sub-network represents a disconnected region
of PF. Thus the edge-based scalarizing function adaptation
in a sub-network is not affected by the other sub-networks.

(4) According to [33], the time complexity of the GP-based
learning model in one generation is O(N3) (N is the pop-
ulation size). Thus the total time complexity of MOEA/D-
LTD in one generation is at least O(N3). In DEA-GNG,
the time complexities of the GNG-based learning model
[55] and the DEA-based optimization model in one gener-
ation are both O(N2). Thus the total time complexity of
DEA-GNG in one generation is O(N2). This implies that
DEA-GNG is computationally cheaper than MOEA/D-
LTD. Please refer to the supplementary material for the
complexity analysis of DEA-GNG.

TABLE I
THE PF PROPERTIES OF TEST PROBLEMS

Reference Problems
Geometric

Shape

Badly

Scaled
Incomplete Disconnected Degenerate

High-

Dimensional

Scaled DTLZ2-2 Concave Yes

Scaled DTLZ2-3 Concave Yes

Scaled DTLZ2-5 Concave Yes Yes

Scaled DTLZ2-8 Concave Yes Yes

Convex DTLZ2-2 Convex

Convex DTLZ2-3 Convex

Convex DTLZ2-5 Convex Yes

Convex DTLZ2-8 Convex Yes

Minus-DTLZ2-2 Convex Yes

Minus-DTLZ2-3 Convex Yes

Minus-DTLZ2-5 Convex Yes Yes

Minus-DTLZ2-8 Convex Yes Yes

 DTLZ2BZ-2 Concave Yes

 DTLZ2BZ-3 Concave Yes

 DTLZ2BZ-5 Concave Yes Yes

 DTLZ2BZ-8 Concave Yes Yes

DTLZ5-3 Concave Yes Yes

DTLZ5-5 Concave Yes Yes

DTLZ5-8 Concave Yes Yes

DTLZ7-2 Mixed Yes Yes Yes

DTLZ7-3 Mixed Yes Yes Yes

DTLZ7-5 Mixed Yes Yes Yes Yes

DTLZ7-8 Mixed Yes Yes Yes Yes

WFG1-2 Mixed Yes

WFG1-3 Mixed Yes

WFG1-5 Mixed Yes Yes

WFG1-8 Mixed Yes Yes

WFG2-2 Mixed Yes Yes Yes

WFG2-3 Mixed Yes Yes Yes

WFG2-5 Mixed Yes Yes Yes Yes

WFG2-8 Mixed Yes Yes Yes Yes

Polygon-based Problem-3 Convex Yes

Polygon-based Problem-5 Convex Yes Yes

Polygon-based Problem-8 Convex Yes Yes

[58] [59]

[2]

[2]

[1]

[56]

[10]

[57]

IV. EXPERIMENTS

A. Settings of Experiments

In this study, we choose 34 test problems with irregular PFs
[1], [2], [10], [56]–[59]. Their references and PF properties
are listed in Table I. We consider these test problems with
2, 3, 5, and 8 objectives except for DTLZ5 and polygon-
based problems. DTLZ5 and polygon-based problems do not
have the bi-objective versions. Therefore, we consider DTLZ5
and polygon-based problems with 3, 5, and 8 objectives. Note
that ProblemX-M means ProblemX with M objectives. For
DTLZ7 and polygon-based problems, the numbers of decision
variables are M+19 and 2, respectively. For the other test
problems, the number of decision variables is M+9.

We choose eight state-of-the-art decomposition-based
MOEAs as the comparative algorithms in this study. They are
A-NSGA-III [35], RVEA* [3], AdaW [37], MOEA/D-LTD
[33], MOEA/D-AWA [34], MOEA/D-SOM [41], MOEA/D-
PaS [31], and MOEA/D [28], which have been introduced in
Section II. The code of MOEA/D-LTD is provided by the
original authors. All the other algorithms are implemented
by PlatEMO [60]. In addition, we include a variant of DEA-
GNG which does not have the adaptation mechanism of the
scalarizing function, denoted as DEA-GNG∗. In DEA-GNG∗,
the scalarizing function for every reference vector is d2. We
compare DEA-GNG∗ with its original version to verify the
effectiveness of the scalarizing function adaptation.

The following parameter settings are adopted by all the
comparative algorithms. Simulated binary crossover (except
in MOEA/D-PaS, where differential evolution operator with
F = 0.5 and CR = 0.9 is adopted according to the

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 11

original study [31]) and polynomial mutation are applied as
the crossover and mutation operators, respectively, where both
distribution indexes are set to 20. The crossover and mutation
probabilities are 1.0 and 1/n, respectively, where n is the
number of decision variables. The termination criterion is
that the population has evolved for the predefined maximum
number of generations. For WFG1, the maximum number of
generations is set to 1,000, while 300 is used for the other
test problems. For 2-, 3-, and 5-objective test problems, the
systematic approach [61] is used to generate a set of uniformly
distributed reference vectors. For 8-objective test problems,
the two-layers approach [2] is used. The number of reference
vectors generated by these approaches is non-arbitrary. We
set the number of reference vectors to be 100 (M = 2),
120 (M = 3), 126 (M = 5), and 156 (M = 8) for all
the comparative algorithms except for MOEA/D-SOM. Then,
the population size N in these algorithms is set equal to the
number of reference vectors. In MOEA/D-SOM, we use a 2-D
SOM network where the number of nodes in each dimension
is the same as suggested in [41]. N in MOEA/D-SOM is set
equal to the number of nodes, which is also non-arbitrary. For
a fair comparison, N is set to be 100 (M = 2), 121 (M = 3),
144 (M = 5), and 169 (M = 8) which are similar to those in
the other algorithms.

In DEA-GNG, the size of input signal archive is set to MN .
ε is set to 0.05π for 2- and 3-objective test problems and
0.15π for 5- and 8-objective test problems. For GNG, HPmax,
agemax, λ, εa, εnb, α, and δ are set to 2|AS |, N , 0.2N , 0.2,
0.01, 0.5, and 0.9, respectively. These parameters in GNG are
set empirically. Although they can be further tuned for each
test problem, we use a fixed setting for all the test problems
to highlight the robustness and generality of our method for
solving various MOPs.

The other parameters of the comparative algorithms are set
in the same manner as in the original studies. In MOEA/D
and MOEA/D-SOM, the PBI approach with θ = 5 and the
Tchebycheff approach are adopted, respectively. In RVEA*,
the rate of changing the penalty function and the frequency to
conduct the reference vector adaptation are set to 2 and 0.1,
respectively. In MOEA/D-AWA, the ratio of updated weight
vectors, the ratio of iterations to evolve with only MOEA/D,
and the iteration interval of utilizing AWA are set to 0.05, 0.8,
and 100, respectively. In AdaW, the interval of updating the
reference vectors and the time of not allowing the update are
every 5% of the total generations and the last 10% generations,
respectively. The maximum archive size is set to 2N . In
MOEA/D-LTD, the begin, end, and interval of performing
LTD procedure is 50%, 80%, and 20, respectively. The rate
of the number of samples to the population size is 40. The
coefficient of the variance threshold is 1.4.

In order to compare different algorithms on these test
problems, we adopt the Inverted Generational Distance Plus
(IGD+) [62] as a performance metric which gives a compre-
hensive quantification of both the convergence and diversity
of a solution set. It is weakly Pareto compliant and thus
more accurate on evaluation than its original version, IGD.
The smaller the value of IGD+ of an algorithm, the better
the performance of the algorithm. IGD+ requires a reference

set, whose points are typically uniformly distributed on the
true PF of a test problem. In this study, over 5,000 reference
points are evenly sampled from the true PF of each test
problem. Note that solutions and the reference points will be
normalized based on the true PF, when calculating IGD+. In
addition, we also use the HV [25] indicator to compare these
algorithms. Please refer to the supplementary material for the
results of HV. Note that there are some inconsistencies of
evaluation results between IGD+ and HV. One reason is that
the evaluation by HV depends on the setting of the reference
point when the PF shape is irregular [63]. Another reason is
that HV and IGD+ have different preferences for evaluation.
In other words, different decision makers may have different
preference to the obtained solution sets, which is quite natural.
Please refer to [64] for a detailed discussion.

All the experimental results in this paper are obtained
by executing 30 independent runs of each algorithm on
each optimization problem. The Wilcoxon’s rank sum test
is employed to determine whether one algorithm shows a
statistically significant difference with the other, and the null
hypothesis is rejected at a significant level of 0.05.

B. Comparison with State of the Art

In this subsection, we applied DEA-GNG, DEA-GNG*, A-
NSGA-III, RVEA*, AdaW, MOEA/D-LTD, MOEA/D-AWA,
MOEA/D-SOM, MOEA/D-PaS, and MOEA/D to 34 test
problems listed in Table I. The average IGD+ value and
the corresponding performance score [25] of each algorithm
on each test problem are given in Table II. A darker tone
corresponds to a larger performance score. For each test
problem, the performance score of an algorithm is the number
of the comparative algorithms which perform significantly
worse than it according to IGD+. Moreover, we give the
average performance score of each algorithms over all the test
problems at the bottom of Table II.

We can see from Table II that DEA-GNG achieved the
highest average performance score, followed by AdaW, DEA-
GNG*, and the others. This means that DEA-GNG has the
best general performance on these test problems, and DEA-
GNG* is the third best. DEA-GNG outperformed DEA-GNG*
on most test problems, which demonstrates the effectiveness of
the proposed scalarizing function adaptation. However, DEA-
GNG obtained worse results on Convex DTLZ2 with more
than two objectives than DEA-GNG*. The reason is that an
extremely large value of θ is needed to find solutions around
the boundary of the PFs of these test problems (due to the
shape of the PFs). It is difficult for the proposed adaptation
method to find such an extreme value based on the limited
number of nodes. Both DEA-GNG and DEA-GNG* failed on
8-objective Convex DTLZ2, while MOEA/D is the best. This
implies that the proposed reference vector adaptation could
have a negative effect for this problem.

DEA-GNG (and DEA-GNG*) did not work well on 5- and
8-objective DTLZ5. This is owing to a large number of non-
dominated solutions far away from the PF, which misleads the
structure of GNG when solving this problem. Both DEA-GNG
and DEA-GNG* did not work well on 2-objective WFG1,

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 12

TABLE II
RESULTS OF IGD+

IGD
+ AdaW

MOEA/D-

LTD

Scaled DTLZ2-2 1.852E-3 8 1.910E-3 6 2.717E-3 1 1.964E-3 4 1.862E-3 8 1.886E-3 7 1.985E-3 4 7.569E-3 0 2.204E-3 2 2.160E-3 2

Scaled DTLZ2-3 2.198E-2 6 2.321E-2 5 2.498E-2 2 2.508E-2 1 2.022E-2 8 1.945E-2 9 2.165E-2 7 5.167E-2 0 2.549E-2 1 2.494E-2 2

Scaled DTLZ2-5 1.033E-1 4 1.072E-1 3 7.370E-2 8 1.112E-1 3 8.374E-2 7 7.180E-2 9 1.131E-1 2 1.842E-1 1 1.136E-1 2 3.384E-1 0

Scaled DTLZ2-8 2.057E-1 4 2.132E-1 4 1.666E-1 8 3.048E-1 2 1.882E-1 6 1.483E-1 8 1.908E-1 6 2.698E-1 3 4.329E-1 1 5.665E-1 0

Convex DTLZ2-2 2.554E-3 6 2.606E-3 6 3.860E-3 1 3.503E-3 1 2.409E-3 8 2.804E-3 5 2.455E-3 8 5.827E-3 0 3.454E-3 2 3.024E-3 4

Convex DTLZ2-3 1.734E-2 6 1.655E-2 7 2.156E-2 1 2.337E-2 0 1.493E-2 8 2.238E-2 1 1.886E-2 4 2.026E-2 3 1.827E-2 5 1.512E-2 8

Convex DTLZ2-5 2.988E-2 7 2.919E-2 7 3.914E-2 5 3.717E-2 5 4.828E-2 4 5.424E-2 2 5.607E-2 1 5.472E-2 1 6.323E-2 0 2.276E-2 9

Convex DTLZ2-8 2.614E-2 3 2.570E-2 3 4.575E-2 2 1.982E-2 8 8.485E-2 1 2.141E-2 5 2.158E-2 5 2.118E-2 5 1.228E-1 0 1.884E-2 9

Minus-DTLZ2-2 1.908E-3 7 1.908E-3 7 4.553E-3 2 2.379E-3 5 1.898E-3 7 3.007E-3 4 2.067E-3 6 2.579E-2 0 3.301E-3 3 5.216E-3 1

Minus-DTLZ2-3 2.510E-2 7 2.842E-2 6 3.625E-2 2 2.562E-2 7 2.482E-2 8 4.192E-2 1 3.151E-2 4 5.934E-2 0 3.343E-2 3 3.095E-2 4

Minus-DTLZ2-5 1.055E-1 9 1.089E-1 7 1.569E-1 4 1.187E-1 6 1.081E-1 7 2.365E-1 1 1.909E-1 3 3.111E-1 0 2.337E-1 2 1.331E-1 5

Minus-DTLZ2-8 2.147E-1 9 2.294E-1 6 2.803E-1 4 2.332E-1 6 2.227E-1 6 3.116E-1 2 3.413E-1 0 2.480E-1 5 2.986E-1 3 3.324E-1 0

 DTLZ2BZ-2 2.584E-3 5 2.905E-3 3 3.854E-3 1 2.494E-3 6 2.503E-3 6 2.448E-3 9 2.474E-3 8 8.798E-3 0 2.913E-3 3 3.687E-3 1

 DTLZ2BZ-3 2.538E-2 9 2.891E-2 5 2.934E-2 4 2.647E-2 7 2.714E-2 6 3.204E-2 3 2.802E-2 6 7.136E-2 0 4.469E-2 1 4.173E-2 2

 DTLZ2BZ-5 9.900E-2 9 1.252E-1 6 1.291E-1 5 1.004E-1 8 1.229E-1 6 1.494E-1 2 1.514E-1 2 2.122E-1 1 2.426E-1 0 1.327E-1 4

 DTLZ2BZ-8 2.019E-1 7 2.046E-1 7 2.508E-1 3 2.149E-1 6 1.987E-1 7 2.840E-1 1 2.245E-1 5 2.811E-1 1 7.941E-1 0 2.597E-1 3

DTLZ5-3 1.800E-3 9 1.900E-3 7 5.186E-3 4 2.583E-3 6 1.853E-3 7 8.700E-3 2 4.437E-3 5 7.977E-3 3 9.392E-3 1 1.523E-2 0

DTLZ5-5 1.002E-1 3 2.353E-1 0 2.655E-1 0 3.852E-2 7 1.233E-1 2 1.043E-1 3 6.825E-2 6 6.390E-3 9 1.152E-1 2 1.270E-2 8

DTLZ5-8 1.765E-1 4 4.863E-1 0 5.771E-1 0 8.516E-2 6 2.010E-1 3 1.497E-1 4 6.226E-2 7 8.403E-3 9 4.399E-1 1 1.708E-2 8

DTLZ7-2 1.933E-3 7 2.038E-3 7 1.848E-3 9 1.253E-2 4 2.161E-3 6 2.334E-2 3 2.358E-3 5 1.575E-1 1 3.143E-1 0 8.928E-2 1

DTLZ7-3 1.936E-2 8 2.311E-2 6 2.827E-2 5 2.266E-2 7 1.973E-2 7 2.909E-2 4 4.096E-2 3 1.140E-1 0 2.283E-1 0 4.841E-2 2

DTLZ7-5 8.756E-2 9 1.118E-1 6 1.300E-1 4 9.910E-2 8 1.165E-1 5 1.041E-1 7 1.775E-1 3 2.240E-1 0 3.369E-1 0 3.496E-1 0

DTLZ7-8 1.851E-1 8 2.032E-1 5 1.996E-1 5 2.627E-1 3 1.994E-1 5 2.189E-1 4 2.061E-1 5 4.292E-1 1 3.058E-1 2 1.042E+0 0

WFG1-2 2.052E-2 3 2.087E-2 3 1.121E-2 7 4.281E-2 1 1.634E-2 3 2.855E-2 2 5.248E-3 9 1.126E-2 7 1.552E-1 0 1.378E-2 5

WFG1-3 1.889E-2 7 1.929E-2 6 1.943E-2 6 2.563E-2 3 1.959E-2 6 2.540E-2 4 2.818E-2 2 8.361E-2 1 1.435E-1 0 2.639E-2 3

WFG1-5 3.448E-2 9 7.384E-2 4 5.032E-2 6 9.635E-2 1 4.663E-2 8 5.734E-2 5 9.533E-2 1 1.143E-1 0 1.165E-1 0 5.092E-2 6

WFG1-8 3.507E-2 8 6.658E-2 3 5.058E-2 4 1.204E-1 1 5.322E-2 4 3.715E-2 8 4.432E-2 7 6.192E-2 3 2.888E-1 0 9.984E-2 2

WFG2-2 2.000E-3 9 2.889E-3 4 2.517E-3 4 2.918E-3 3 2.279E-3 7 2.727E-3 4 2.682E-3 4 6.611E-3 1 4.263E-3 2 1.346E-2 0

WFG2-3 1.451E-2 9 1.801E-2 6 2.160E-2 5 3.032E-2 1 1.734E-2 6 2.526E-2 3 2.740E-2 2 2.947E-2 1 1.696E-2 7 6.055E-2 0

WFG2-5 3.454E-2 8 4.070E-2 7 5.161E-2 5 7.251E-2 1 3.289E-2 8 5.936E-2 3 6.369E-2 2 5.308E-2 5 7.848E-2 1 1.283E-1 0

WFG2-8 3.491E-2 8 4.096E-2 5 9.518E-2 1 7.352E-2 3 5.900E-2 4 2.645E-2 9 4.255E-2 5 4.444E-2 5 3.836E-1 0 1.031E-1 1

Polygon-based Problem-3 2.229E-2 8 2.370E-2 6 2.666E-2 5 2.230E-2 8 2.331E-2 6 3.951E-2 3 3.107E-2 4 4.419E-2 1 5.164E-2 0 4.331E-2 1

Polygon-based Problem-5 3.383E-2 9 3.476E-2 7 4.553E-2 6 7.714E-2 3 3.849E-2 6 8.130E-2 2 6.739E-2 3 8.646E-2 1 1.169E-1 0 5.586E-2 5

Polygon-based Problem-8 3.934E-2 9 4.018E-2 7 5.105E-2 6 1.154E-1 1 4.233E-2 6 1.110E-1 3 1.175E-1 1 1.037E-1 4 1.017E-1 4 1.578E-1 0

Average Performance Score 2.824

MOEA/D-

PaS

1.412

MOEA/D-

SOM
MOEA/D

7.088 5.206 3.971 4.176 5.941 4.176 4.265 2.118

DEA-GNG DEA-GNG* A-NSGA-III RVEA*
MOEA/D-

AWA

either. We observed that when solving WFG1, the obtained PF
usually spread from a very small area to the whole PF, which
resulted in most input signals as well as the nodes located in
the starting area. However, this feature of WFG1 seems have a
larger negative effect on the other algorithms than DEA-GNG
when the number of objectives is 3, 5, and 8.

A-NSGA-III achieved acceptable comprehensive perfor-
mance according its average performance score. It got exciting
results on Scaled DTLZ2-5, Scaled DTLZ2-8, and DTLZ7-2.
However, it performed poorly on 2- and 3-objective Scaled
DTLZ2, Convex DTLZ2, Minus DTLZ2, DTLZ2BZ, 5- and
8-objective Scaled DTLZ5, and 8-objective WFG2. Since A-
NSGA-III regularly generates new reference vectors around
uniformly distributed ones, these reference vectors cannot
perfectly fit the irregular PF shape in such cases.

The general performance of RVEA* is moderate. It ran-
domly generate new reference vectors where a Pareto optimal
solution may locate, which has a positive effect on the test
problems whose PFs do not cover the entire objective space,
such as Minus-DTLZ2, DTLZ2BZ, DTLZ5, and 3-objective
Polygon-based Problem.

AdaW won the second place according to the average
performance score and generally performed better than DEA-
GNG*. This shows the strength of the archive maintenance
method in AdaW in promoting diversity. It is very interesting

to use this archive maintenance method to maintain input
signals in DEA-GNG in the future. However, this archive
maintenance method seems to result in relatively poor perfor-
mance on some high-dimensional problems, such as Convex
DTLZ2-5, Convex DTLZ2-8, DTLZ5-5, DTLZ5-8, WFG1-8,
and WFG2-8.

MOEA/D-LTD is generally better than A-NSGA-III. It is
powerful in solving Scaled DTLZ2. This indicates that the
GP-based learning model is quite good at handling the PF
with a relatively simple shape. MOEA/D-LTD also achieved
outstanding results on DTLZ2BZ-2, WFG1-8, and WFG2-8.

MOEA/D-AWA performed the fourth best among the exam-
ined algorithms on the average. It worked well on most prob-
lems especially Scaled DTLZ2-3, Scaled DTLZ2-8, Convex
DTLZ2-2, DTLZ2BZ-2, WFG1-2, and WFG1-8. However, it
seems that MOEA/D-AWA cannot handle an inverted triangle
PF in the high-dimensional space according to the results on 5-
and 8-objective Minus-DTLZ2 and Polygon-based Problems.

MOEA/D-SOM performed poorly on most test problems
due to two aspects. One is that MOEA/D-SOM lacks a strategy
to reserve the good input signals. The other is the drawbacks
of SOM as aforementioned in Subsection II-B. However,
MOEA/D-SOM significantly outperformed the others on 5-
and 8-objective DTLZ5. This is because the 2-D SOM network
has a natural advantage in learning a low-dimensional PF in

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 13

the high-dimensional space.
MOEA/D-PaS achieved the worst performance among these

algorithms mainly due to the lack of reference vector adap-
tation, which implies that reference vector adaptation may be
generally more important than scalarizing function adaptation
for handling irregular PFs. However, MOEA/D-PaS still ob-
tained some satisfying results, such as on 3-objective Convex
DTLZ2 and WFG2.

MOEA/D is a classic decomposition-based algorithm with
no adaptation mechanism of reference vectors or scalarizing
functions. Although its general performance is not good, it
surprisingly outperformed most other algorithms on Convex
DTLZ2 with 3, 5, and 8 objectives and DTLZ5 with 5 and 8
objectives. The reason is that the misleading information ob-
tained during the evolution results in inappropriate adaptation
in the other algorithms.

V. CONCLUSION

In this paper, we have proposed a novel decomposition-
based multi-objective evolutionary algorithm guided by grow-
ing neural gas, termed DEA-GNG. In the proposed method,
the topological structure of the PF is learned by a modified
GNG model where the known solutions are contentiously input
as signals. The reference vectors are adapted by combining the
nodes in the GNG network and a set of uniformly distributed
reference vectors. The scalarizing function of each reference
vector is adapted based on the angles between the correspond-
ing node and the edges emanated from it. The search ability of
the evolutionary algorithm is enhanced by these two adaptation
mechanisms.

We compared DEA-GNG with A-NSGA-III, RVEA*,
AdaW, MOEA/D-LTD, MOEA/D-AWA, MOEA/D-SOM,
MOEA/D-PaS, and MOEA/D by applying them to 34 test
problems. The experimental results showed that DEA-GNG
is better than the compared algorithms on average. Moreover,
by comparing DEA-GNG with its variant DEA-GNG* with-
out adapting θ, the effectiveness of the proposed scalarizing
function adaptation was verified. In addition, please refer to
the supplementary material for the investigation of the effects
of the three parameters, NS , ε, and α on the behavior of DEA-
GNG.

One future direction is to improve the input signal archive
update for uniformity. One possible way is to incorporate
some existing diversity maintenance methods. Another future
research is to design a new GNG model that can provide
accurate information of adapting scalarizing functions even
if the number of nodes is not enough.

* The code of DEA-GNG is available on https://github.com/
yiping0liu.

REFERENCES

[1] H. Ishibuchi, Y. Setoguchi, H. Masuda, and Y. Nojima, “Performance
of decomposition-based many-objective algorithms strongly depends on
Pareto front shapes,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 2, pp. 169–190, 2017.

[2] K. Deb and H. Jain, “An evolutionary many-objective optimization
algorithm using reference-point based non-dominated sorting approach,
part I: Solving problems with box constraints,” IEEE Transactions on
Evolutionary Computation, vol. 18, no. 4, pp. 577–601, 2013.

[3] R. Cheng, Y. Jin, M. Olhofer, and B. Sendhoff, “A reference vector
guided evolutionary algorithm for many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 20, no. 5, pp. 773–791,
2016.

[4] Y. Xiang, Y. Zhou, M. Li, and Z. Chen, “A vector angle-based evolu-
tionary algorithm for unconstrained many-objective optimization,” IEEE
Transactions on Evolutionary Computation, vol. 21, no. 1, pp. 131–152,
2017.

[5] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective per-
mutation flowshop scheduling,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 204–223, 2003.

[6] B. Derbel, A. Liefooghe, Q. Zhang, H. Aguirre, and K. Tanaka,
“Multi-objective local search based on decomposition,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2016,
pp. 431–441.

[7] Y. Liu, G. G. Yen, and D. Gong, “A multi-modal multi-objective
evolutionary algorithm using two-archive and recombination strategies,”
IEEE Transactions on Evolutionary Computation, 2018. [Online].
Available: http://dx.doi.org/10.1109/TEVC.2018.2879406

[8] R. Tanabe and H. Ishibuchi, “A decomposition-based evolutionary
algorithm for multi-modal multi-objective optimization,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2018,
pp. 249–261.

[9] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decomposi-
tion,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 5,
pp. 694–716, 2015.

[10] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, Scalable Test Problems
for Evolutionary Multiobjective Optimization. Springer, 2005.

[11] Y. Hua, Y. Jin, and K. Hao, “A clustering-based adaptive evolutionary
algorithm for multiobjective optimization with irregular Pareto fronts,”
IEEE Transactions on Cybernetics, vol. 49, no. 7, pp. 2758–2770, 2019.

[12] R. Qi and G. G. Yen, “Hybrid bi-objective portfolio optimization with
pre-selection strategy,” Information Sciences, vol. 417, pp. 401–419,
2017.

[13] Y. Han, J.-Q. Li, D. Gong, and H. Sang, “Multi-objective migrating birds
optimization algorithm for stochastic lot-streaming flow shop scheduling
with blocking,” IEEE Access, vol. 7, pp. 5946–5962, 2019.

[14] J. Z. Salazar, P. M. Reed, J. D. Quinn, M. Giuliani, and A. Castelletti,
“Balancing exploration, uncertainty and computational demands in many
objective reservoir optimization,” Advances in Water Resources, vol.
109, pp. 196–210, 2017.

[15] B. Fritzke, “A growing neural gas network learns topologies,” in Ad-
vances in neural information processing systems, 1995, pp. 625–632.

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[17] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the strength
Pareto evolutionary algorithm,” Eidgenössische Technische Hochschule
Zürich (ETH), Institut für Technische Informatik und Kommunikation-
snetze (TIK), Tech. Rep., 2001.

[18] H. Sato, H. Aguirre, and K. Tanaka, “Improved S-CDAs using crossover
controlling the number of crossed genes for many-objective optimiza-
tion,” in Proceedings of the Genetic and Evolutionary Computation
Conference. Deblin, Ireland: ACM, 2011, pp. 753–760.

[19] A. L. Jaimes, H. Aguirre, K. Tanaka, and C. A. C. Coello, “Objective
space partitioning using conflict information for many-objective opti-
mization,” in International Conference on Parallel Problem Solving from
Nature. Krakw, Poland: Springer, 2010, pp. 657–666.

[20] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multiobjective optimization,”
Evolutionary Computation, vol. 10, no. 3, pp. 263–282, 2002.

[21] F. di Pierro, S.-T. Khu, and D. A. Savic, “An investigation on preference
order ranking scheme for multiobjective evolutionary optimization,”
IEEE Transactions on Evolutionary Computation, vol. 11, no. 1, pp.
17–45, 2007.

[22] Z. He, G. G. Yen, and J. Zhang, “Fuzzy-based Pareto optimality for
many-objective evolutionary algorithms,” IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 2, pp. 269–285, 2014.

[23] A. López Jaimes and C. A. Coello Coello, “Study of preference relations
in many-objective optimization,” in Proceedings of the Genetic and
Evolutionary Computation Conference. Montreal, Canada: ACM, 2009,
pp. 611–618.

[24] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in International Conference on Parallel Problem Solving from
Nature. Birmingham, UK: Springer, 2004, pp. 832–842.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 14

[25] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evolutionary Computation, vol. 19, no. 1,
pp. 45–76, 2011.

[26] R. Hernández Gómez and C. A. Coello Coello, “Improved metaheuristic
based on the R2 indicator for many-objective optimization,” in Proceed-
ings of the Genetic and Evolutionary Computation Conference. Madrid,
Spain: ACM, 2015, pp. 679–686.

[27] K. Shang, H. Ishibuchi, M.-L. Zhang, and Y. Liu, “A new R2 indicator
for better hypervolume approximation,” in Proceedings of the Genetic
and Evolutionary Computation Conference. ACM, 2018, pp. 745–752.

[28] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Transactions on Evolutionary Compu-
tation, vol. 11, no. 6, pp. 712–731, 2007.

[29] H. Ishibuchi, Y. Sakane, N. Tsukamoto, and Y. Nojima, “Adaptation
of scalarizing functions in MOEA/D: An adaptive scalarizing function-
based multiobjective evolutionary algorithm,” in International Confer-
ence on Evolutionary Multi-Criterion Optimization. Springer, 2009,
pp. 438–452.

[30] ——, “Simultaneous use of different scalarizing functions in MOEA/D,”
in Proceedings of the Conference on Genetic and Evolutionary Compu-
tation. ACM, 2010, pp. 519–526.

[31] R. Wang, Q. Zhang, and T. Zhang, “Decomposition-based algorithms
using pareto adaptive scalarizing methods,” IEEE Transactions on Evo-
lutionary Computation, vol. 20, no. 6, pp. 821–837, 2016.

[32] M. Ming, R. Wang, Y. Zha, and T. Zhang, “Pareto adaptive penalty-
based boundary intersection method for multi-objective optimization,”
Information Sciences, vol. 414, pp. 158–174, 2017.

[33] M. Wu, K. Li, S. Kwong, Q. Zhang, and J. Zhang, “Learning to decom-
pose: a paradigm for decomposition-based multiobjective optimization,”
IEEE Transactions on Evolutionary Computation, vol. 23, no. 3, pp.
376–390, 2018.

[34] Y. Qi, X. Ma, F. Liu, L. Jiao, J. Sun, and J. Wu, “MOEA/D with adaptive
weight adjustment,” Evolutionary Computation, vol. 22, no. 2, pp. 231–
264, 2014.

[35] H. Jain and K. Deb, “An evolutionary many-objective optimization
algorithm using reference-point based nondominated sorting approach,
part II: Handling constraints and extending to an adaptive approach.”
IEEE Trans. Evolutionary Computation, vol. 18, no. 4, pp. 602–622,
2014.

[36] H. Xu, W. Zeng, D. Zhang, and X. Zeng, “MOEA/HD: A multiobjective
evolutionary algorithm based on hierarchical decomposition,” IEEE
transactions on Cybernetics, vol. 49, no. 2, pp. 517–526, 2019.

[37] M. Li and X. Yao, “What weights work for you? adapting weights
for any pareto front shape in decomposition-based evolutionary multi-
objective optimisation,” arXiv preprint arXiv:1709.02679, 2017.

[38] Y. Liu, D. Gong, X. Sun, and Y. Zhang, “Many-objective evolution-
ary optimization based on reference points,” Applied Soft Computing,
vol. 50, no. 1, pp. 344–355, 2017.

[39] Y. Tian, R. Cheng, X. Zhang, F. Cheng, and Y. Jin, “An indicator-based
multiobjective evolutionary algorithm with reference point adaptation
for better versatility,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 4, pp. 609–622, 2017.

[40] H.-L. Liu, L. Chen, Q. Zhang, and K. Deb, “Adaptively allocating
search effort in challenging many-objective optimization problems,”
IEEE Transactions on Evolutionary Computation, vol. 22, no. 3, pp.
433–448, 2018.

[41] F. Gu and Y.-M. Cheung, “Self-organizing map-based weight design
for decomposition-based many-objective evolutionary algorithm,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 2, pp. 211–225,
2018.

[42] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE,
vol. 78, no. 9, pp. 1464–1480, 1990.

[43] N. Masuyama and C. K. Loo, “Growing neural gas with correntropy
induced metric,” in IEEE Symposium Series on Computational Intelli-
gence. IEEE, 2016, pp. 1–7.

[44] N. Masuyama, C. K. Loo, and S. Wermter, “A kernel bayesian adaptive
resonance theory with a topological structure,” International Journal of
Neural Systems, 2018.

[45] L. Martı́, J. Garcı́a, A. Berlanga, and J. M. Molina, “Introducing MON-
EDA: Scalable multiobjective optimization with a neural estimation of
distribution algorithm,” in Proceedings of the Genetic and Evolutionary
Computation Conference. ACM, 2008, pp. 689–696.

[46] L. Martı́, J. Garcı́A, A. Berlanga, C. A. C. Coello, and J. M. Molina,
“MB-GNG: Addressing drawbacks in multi-objective optimization esti-
mation of distribution algorithms,” Operations Research Letters, vol. 39,
no. 2, pp. 150–154, 2011.

[47] Q. Zhang, A. Zhou, and Y. Jin, “RM-MEDA: A regularity model-based
multiobjective estimation of distribution algorithm,” IEEE Transactions
on Evolutionary Computation, vol. 12, no. 1, pp. 41–63, 2008.

[48] D. Büche, M. Milano, and P. Koumoutsakos, “Self-organizing maps
for multi-objective optimization,” in Proceedings of the Genetic and
Evolutionary Computation Conference, 2002, pp. 152–155.

[49] S. Obayashi and D. Sasaki, “Visualization and data mining of pareto
solutions using self-organizing map,” in International Conference on
Evolutionary Multi-Criterion Optimization. Springer, 2003, pp. 796–
809.

[50] H. Zhang, A. Zhou, S. Song, Q. Zhang, X.-Z. Gao, and J. Zhang, “A self-
organizing multiobjective evolutionary algorithm,” IEEE Transactions
on Evolutionary Computation, vol. 20, no. 5, pp. 792–806, 2016.

[51] K. Li, R. Chen, G. Fu, and X. Yao, “Two-archive evolutionary algorithm
for constrained multiobjective optimization,” IEEE Transactions on
Evolutionary Computation, vol. 23, no. 2, pp. 303–315, 2019.

[52] Y. Liu, D. Gong, J. Sun, and Y. Jin, “A many-objective evolutionary
algorithm using a one-by-one selection strategy,” IEEE Transactions on
Cybernetics, vol. 47, no. 9, pp. 2689–2702, 2017.

[53] Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, “Improv-
ing 1by1ea to handle various shapes of pareto fronts,” in International
Conference on Parallel Problem Solving from Nature. Springer, 2018,
pp. 311–322.

[54] D. Gong, Y. Liu, and G. G. Yen, “A meta-objective approach for
many-objective evolutionary optimization,” Evolutionary Computation,
2018. [Online]. Available: http://dx.doi.org/10.1162/evco a 00243

[55] Y. Quintana-Pacheco, D. Ruiz-Fernández, and A. Magrans-Rico, “Grow-
ing neural gas approach for obtaining homogeneous maps by restricting
the insertion of new nodes,” Neural Networks, vol. 54, pp. 95–102, 2014.

[56] D. Brockhoff and E. Zitzler, “Objective reduction in evolutionary
multiobjective optimization: Theory and applications,” Evolutionary
computation, vol. 17, no. 2, pp. 135–166, 2009.

[57] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multiobjective test problems and a scalable test problem toolkit,” IEEE
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–506,
2006.

[58] M. Li, C. Grosan, S. Yang, X. Liu, and X. Yao, “Multiline distance
minimization: A visualized many-objective test problem suite,” IEEE
Transactions on Evolutionary Computation, vol. 22, no. 1, pp. 61–78,
2018.

[59] Y. Liu, H. Ishibuchi, Y. Nojima, N. Masuyama, and K. Shang, “A
double-niched evolutionary algorithm and its behavior on polygon-based
problems,” in International Conference on Parallel Problem Solving
from Nature. Springer, 2018, pp. 262–273.

[60] Y. Tian, R. Cheng, X. Zhang, and Y. Jin, “PlatEMO: A MATLAB
platform for evolutionary multi-objective optimization,” IEEE Compu-
tational Intelligence Magazine, vol. 12, no. 4, pp. 73–87, 2017.

[61] I. Das and J. E. Dennis, “Normal-boundary intersection: A new method
for generating the Pareto surface in nonlinear multicriteria optimization
problems,” SIAM Journal on Optimization, vol. 8, no. 3, pp. 631–657,
1998.

[62] H. Ishibuchi, H. Masuda, Y. Tanigaki, and Y. Nojima, “Modified
distance calculation in generational distance and inverted generational
distance,” in International Conference on Evolutionary Multi-Criterion
Optimization. Springer, 2015, pp. 110–125.

[63] H. Ishibuchi, R. Imada, N. Masuyama, and Y. Nojima, “Comparison of
hypervolume, IGD and IGD+ from the viewpoint of optimal distribu-
tions of solutions,” in International Conference on Evolutionary Multi-
Criterion Optimization. Springer, 2019, pp. 332–345.

[64] M. Li and X. Yao, “Quality evaluation of solution sets in multiobjective
optimisation: A survey,” ACM Computing Surveys (CSUR), vol. 52,
no. 2, p. 26, 2019.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 15

Yiping Liu (M’18) received the Ph.D. degree in
control theory and control engineering from China
University of Mining and Technology, China in
2017. During 2016-2017, he was a visiting scholar in
the School of Electrical and Computer Engineering,
Oklahoma State University, USA. He is currently a
Research Assistant Professor in the Department of
Computer Science and Intelligent Systems, Osaka
Prefecture University, Japan. His research interests
include evolutionary computation, multi-objective
optimization, and machine learning.

Hisao Ishibuchi (M’93–SM’10–F’14) received the
B.S. and M.S. degrees in precision mechanics from
Kyoto University, Kyoto, Japan, in 1985 and 1987,
respectively, and the Ph.D. degree in computer
science from Osaka Prefecture University, Sakai,
Osaka, Japan, in 1992. Since 1987, he has been
with Osaka Prefecture University. Since 2017, he
is a Chair Professor at Southern University of Sci-
ence and Technology, China. His research inter-
ests include fuzzy rule-based classifiers, evolution-
ary multi-objective and many-objective optimization,

memetic algorithms, and evolutionary games.
Dr. Ishibuchi was the IEEE Computational Intelligence Society (CIS) Vice-

President for Technical Activities in 2010-2013. Currently he is an AdCom
member of the IEEE CIS (2014-2019), and the Editor-in-Chief of the IEEE
COMPUTATIONAL INTELLIGENCE MAGAZINE (2014-2019).

Naoki Masuyama (S’12–M’16) graduated from Ni-
hon University in 2010, received the M.E. degree
from Tokyo Metropolitan University in 2012, and he
obtained the Ph.D. degree from Faculty of Computer
Science and Information Technology, University of
Malaya, Malaysia in 2016. He is currently an As-
sistant Professor in the Department of Computer
Science and Intelligent Systems, Osaka Prefecture
University, Japan. His research interests include data
mining and machine learning.

Yusuke Nojima (S’99–M’04) received the B.S.
and M.S. Degrees in mechanical engineering from
Osaka Institute of Technology, Osaka, Japan, in
1999 and 2001, respectively, and the Ph.D. degree
in system function science from Kobe University,
Hyogo, Japan, in 2004. Since 2004, he has been with
Osaka Prefecture University, Osaka, Japan, where
he was a Research Associate and is currently an
Associate Professor in the Department of Computer
Science and Intelligent Systems. His research in-
terests include evolutionary machine learning and

evolutionary multi-objective optimization.

