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Abstract—This is the supplementary material for Handling
Imbalance Between Convergence and Diversity in the Decision
Space in Evolutionary Multi-Modal Multi-Objective Optimiza-
tion. This supplementary material provides the investigations on
(1) the property of some existing MMOPs and (2) the behavior
of CPDEA.

I. INVESTIGATION ON THE PROPERTY OF MMMOP1,
OMNI-TEST PROBLEM, AND SYM-PART

In this section, we investigate the property of MMMOP1
[1], Omin-test problem [2], and SYM-PART [3] with two
objectives and two decision variables. In SYM-PART, a, b,
c are set to 0.1, 1, 0.8, respectively.

MMMOP1 has five equivalent Pareto optimal subsets.
Omni-test problem and SYM-PART have nine equivalent
Pareto optimal subsets. They are listed in Table I.

In Fig. 1, we show the fitness landscape based on Pareto
rank of these problems, where each line segment is an equiv-
alent Pareto optimal subset of the corresponding problem. We
can see from Fig. 1 that for each problem, the pattern around
each equivalent Pareto optimal subset is the same. This implies
that the difficulties in finding equivalent Pareto optimal subsets
are the same.

To check whether these problems meet the first condition
in Definition 2, Fig. 2 shows the average Pareto rank of
solutions close to each equivalent Pareto optimal subset, where
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Si (i = 1, . . . , 5 for MMMOP1, and i = 1, . . . , 9 for
Omni-test problem and SYM-PART) is the set of solutions
whose distances to the ith equivalent Pareto optimal subset
are smaller than dth. We can see from Fig. 2 that for each
problem, the average Pareto rank of solutions close to each
equivalent Pareto optimal subset is the same. Therefore, these
problem do not satisfy the first condition.

To check the second condition, in Fig. 3, for each problem,
we show the results of IGDX over 40 runs when DNEA
was used to solve some new optimization problems, MOPi
(i = 1, . . . , 5 for MMMOP1, and i = 1, . . . , 9 for Omni-test
problem and SYM-PART). The objective functions of MOPi
are the same to those of the original MMOP (i.e., MMMOP1,
Omni-test problem, or SYM-PART). The bounds of x1 and
x2 in each MOP are listed in Table I. The PS of MOPi is
the same to the ith equivalent Pareto optimal subset of the
corresponding MMOP. We can see from Fig. 3 that for each
problem, the curves of IGDX when solving these MOPs are
almost the same. Therefore, the complexities of searching for
the equivalent Pareto optimal subsets are the same, and the
second condition is not met.

Based on the above results, we can see that MMMOP1,
Omni-test problem, and SYM-PART are not MMOP-ICDs.
The property of other MMOPs can be investigated in the same
way, and most existing benchmark MMOPs are not MMOP-
ICDs.

II. FURTHER INVESTIGATIONS ON THE BEHAVIOR OF
CPDEA

We investigate two key parameters, η and p, to observe
their effects on the behavior of CPDEA and thus to provide
guidelines for setting them. We show the results of CPDEA
on IDMP-M2-T1. Similar results were obtained on other test
problems while they are not shown here. In addition, we
visualize the final population of CPDEA on different test
problems for an intuitive understanding of the CPD method.

A. Sensitivity Analysis of η

We applied CPDEA to IDMP-M2-T1 with different settings
of η (η = 1, . . . , 10). The average IGDX and IGDM values
over 40 runs are shown in Fig. 4. Note that p is set to 1 to avoid
using the second reproduction operator. We can see from Fig. 4
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TABLE I
THE EQUIVALENT PARETO OPTIMAL SUBSETS OF MMMOP1, OMNI-TEST PROBLEM, AND SYM-PART. THE BOUNDS OF x1 AND x2 IN THE

OPTIMIZATION PROBLEM, MOPi, WHOSE PS IS THE SAME TO THE CORRESPONDING EQUIVALENT PARETO OPTIMAL SUBSET.

 

i
 i th equivalent Pareto 

optimal subset

Bound of x 1     

in MOPi

Bound of x 2    

in MOPi

 i th equivalent Pareto 

optimal subset

Bound of x 1     

in MOPi

Bound of x 2    

in MOPi

 i th equivalent Pareto 

optimal subset

Bound of x 1     

in MOPi

Bound of x 2    

in MOPi

1 x 2 = 0.1 [0, 1] [0, 0.2] x 1 = x 2, x 1 ∈ [1, 1.5] [0, 2] [0, 2] x 2 = -1, x 1 ∈ [-1.1, -0.9] [-1.5, -0.5] [-1.5, -0.5]

2 x 2 = 0.3 [0, 1] [0.2, 0.4] x 1 = x 2 + 2, x 1 ∈ [3, 3.5] [2, 4] [0, 2] x 2 = -1, x 1 ∈ [-0.1, 0.1] [-0.5, 0.5] [-1.5, -0.5]

3 x 2 = 0.5 [0, 1] [0.4, 0.6] x 1 = x 2 + 4, x 1 ∈ [5, 5.5] [4, 6] [0, 2] x 2 = -1, x 1 ∈ [0.9, 1.1] [0.5, 1.5] [-1.5, -0.5]

4 x 2 = 0.7 [0, 1] [0.6, 0.8] x 1 = x 2 + 2, x 1 ∈ [1, 1.5] [0, 2] [2, 4] x 2 = 0, x 1 ∈ [-1.1, -0.9] [-1.5, -0.5] [-0.5, 0.5]

5 x 2 = 0.9 [0, 1] [0.8, 1] x 1 = x 2, x 1 ∈ [3, 3.5] [2, 4] [2, 4] x 2 = 0, x 1 ∈ [-0.1, 0.1] [-0.5, 0.5] [-0.5, 0.5]

6 \ \ \ x 1 = x 2 - 2, x 1 ∈ [5, 5.5] [4, 6] [2, 4] x 2 = 0, x 1 ∈ [0.9, 1.1] [0.5, 1.5] [-0.5, 0.5]

7 \ \ \ x 1 = x 2 + 4, x 1 ∈ [1, 1.5] [0, 2] [4, 6] x 2 = 1, x 1 ∈ [-1.1, -0.9] [-1.5, -0.5] [0.5, 1.5]

8 \ \ \ x 1 = x 2 + 2, x 1 ∈ [3, 3.5] [2, 4] [4, 6] x 2 = 1, x 1 ∈ [-0.1, 0.1] [-0.5, 0.5] [0.5, 1.5]

9 \ \ \ x 1 = x 2, x 1 ∈ [5, 5.5] [4, 6] [4, 6] x 2 = 1, x 1 ∈ [0.9, 1.1] [0.5, 1.5] [0.5, 1.5]
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Fig. 1. The fitness landscapes based on Pareto rank of MMMOP1, Omin-test problem, and SYM-PART. For each problem, 10, 201 (101 × 101) solutions
are uniformly sampled in the entire decision space. They are in different colors based on their Pareto ranks. A brighter (warmer) tone corresponds to a lower
Pareto rank. Each line segment is an equivalent Pareto optimal subset.
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Fig. 2. The average Pareto rank of solutions close to each equivalent Pareto optimal subset based on Fig. 1. Si (i = 1, . . . , 5 for MMMOP1, and i = 1, . . . , 9
for Omni-test problem and SYM-PART) is the solutions whose distances to the ith equivalent Pareto optimal subset is smaller than dth.
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Fig. 3. The IGDX value (averaged over 40 runs) with respect to generations when using DNEA to some new optimization problems.
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Fig. 4. The average IGDX and IGDM values over 40 runs obtained by
CPDEA on IDMP-M2-T1 with different settings of η.

that all the IGDX and IGDM values under different settings
of η are quite good, and the differences among the IGDX (or
IGDM) values are very small. This means that CPDEA shows
a robust performance under different settings of η.

B. Sensitivity Analysis of p

We used IDMP-M2-T1 with α = 10 to investigate the effect
of p. We set α to such a large value to increase the difficulty in
finding EPS2, so that the effect of p can be easily observed.
In Fig. 5, we show the average IGDX value over 40 runs
with respect to the number of evaluated solutions, which were
obtained by CPDEA with different settings of p, i.e., p = 1,
0.5, and 1 ∼ 0.5. p = 1 ∼ 0.5 means that we set p = 1 before
the number of evaluated solutions reached 9, 000 and p = 0.5
after that. We can see from Fig. 5 that when p = 0.5 through
the entire evolution, the convergence rate according to IGDX
is much slower than the case of p = 0. We also observed
that (which are not shown here) almost no solution close to
EPS2 had been found by setting p = 0.5. This indicates that
executing the second reproduction operator will reduce the
efficiency of searching for an EPS when no solution close to
it has been found. When p = 1, the solutions close to each
EPS had been found before the number of evaluated solutions
reached 9, 000. Then changing p to 0.5 further decreased
the IGDX value. This suggests that the second reproduction
operator can enhance the algorithm’s exploitation ability under
such a situation. Note that for different optimization problems,
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Fig. 5. The average IGDX value over 40 runs with respect to the number of
evaluate solutions obtained by CPDEA on IDMP-M2-T1 with α = 10.

the difficultly in finding each EPS is different. Therefore, it
may be needed to develop a method to adaptively tune p,
which is an interesting future research topic.

C. Visualization of the Final Population of CPDEA

Fig. 6 shows the final population of DNEA on two-objective
IDMPs, IDMP-M3-T1 and IDMP-M4-T1, in a single run. This
particular run is associated with the result which is the closest
to the mean IGDX value in Table III in the main body of the
paper. The results on three- and four-objective IDMPs in Types
2, 3, and 4 are similar to those in Type1. We can see from
Fig. 6 that the solutions are dense in the regions where the
EPSs locate and sparse in the other regions. It is interesting to
note that the patterns of solutions in Fig. 6 (a)-(d) are similar
to the corresponding fitness landscapes in Fig. 3 in the main
body of the paper.
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Fig. 6. The final population of DNEA on different test problems in a single run. This particular run is associated with the result which is the closest to the
mean IGDX value in Table III in the main body of the paper.


