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Abstract—There may exist more than one Pareto optimal
solution with the same objective vector to a multi-modal multi-
objective optimization problem (MMOP). The difficulties in
finding such solutions can be different. Although a number of
evolutionary multi-modal multi-objective algorithms (EMMAs)
have been proposed, they are unable to solve such an MMOP
due to their convergence-first selection criteria. They quickly
converge to the Pareto optimal solutions which are easy to
find and therefore lose diversity in the decision space. That
is, such an MMOP features an imbalance between achieving
convergence and preserving diversity in the decision space. In this
paper, we first present a set of imbalanced distance minimization
benchmark problems. Then we propose an evolutionary algo-
rithm using a convergence-penalized density method (CPDEA).
In CPDEA, the distances among solutions in the decision space
are transformed based on their local convergence quality. Their
density values are estimated based on the transformed distances
and used as the selection criterion. We compare CPDEA with
five state-of-the-art EMMAs on the proposed benchmarks. Our
experimental results show that CPDEA is clearly superior in
solving these problems.

Index Terms—Evolutionary multi-modal multi-objective opti-
mization, convergence, decision space diversity, density estima-
tion, test problems.

I. INTRODUCTION

MULTI-objective optimization problems (MOPs) are
commonly seen in a variety of disciplines, such as job

shop scheduling [1] and financial portfolio management [2].
They involve multiple objectives to be optimized simultane-

This work was supported in part by the National Natural Science Foundation
of China under Grant 61876075 and Grant 61803192, in part by the Program
for Guangdong Introducing Innovative and Enterpreneurial Teams under
Grant 2017ZT07X386, in part by the Shenzhen Peacock Plan under Grant
KQTD2016112514355531, in part by the Science and Technology Innovation
Committee Foundation of Shenzhen under Grant ZDSYS201703031748284,
in part by the Program for University Key Laboratory of Guangdong Province
under Grant 2017KSYS008, and in part by Japan Society for the Promotion of
Science (JSPS) KAKENHI under Grant JP19K20358. (Corresponding Author:
Hisao Ishibuchi)

Y. Liu, Y. Nojima, and N. Masuyama are with Department of Computer
Science and Intelligent Systems, Graduate School of Engineering, Osaka
Prefecture University, Sakai, Osaka 599-8531, Japan. (yiping0liu@gmail.com,
nojima@cs.osakafu-u.ac.jp, masuyama@cs.osakafu-u.ac.jp)

H. Ishibuchi is with Shenzhen Key Laboratory of Computational In-
telligence, University Key Laboratory of Evolving Intelligent Systems of
Guangdong Province, Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China.
(hisao@sustech.edu.cn)

G. G. Yen is with the School of Electrical and Computer Engineering,
Oklahoma State University, Stillwater, OK 74078, USA. (gyen@okstate.edu)

ously. In this study, we consider an MOP with box constraints,
which can be formulated as follows:

minf(x) = min(f1(x), . . . , fM (x)),
s.t. x ∈ S, (1)

where x is an n-dimensional decision vector in the search
space S, fm(x) is the m-th objective to be minimized (m =
1, ...,M ), and M is the number of objectives. S = {x ∈
Rn : xlower

i ≤ xi ≤ xupper
i , i = 1, . . . , n} where xupper

i and
xlower
i are the lower and upper bounds of xi, respectively. Due

to the conflicting nature of objectives, usually an MOP has
no single optimal solution which simultaneously optimizes all
objectives. It has a set of trade-off solutions, known as the
Pareto optimal solution set (PS). The image of the PS in the
objective space is called the Pareto optimal front (PF).

For an MOP, if there exist at least two different Pareto
optimal solutions with the same objective vector, i.e., cor-
responding to the same point on the PF, it is also called
multi-modal multi-objective optimization problem (MMOP)
[3]. Pareto optimal solutions which have the same objective
vector are referred to as equivalent Pareto optimal solutions.

Over the past two decades, a number of evolutionary multi-
objective algorithms (EMOAs) have been proposed and proven
successful in solving MOPs, such as elitist non-dominated
sorting genetic algorithm II (NSGA-II) [4] and multi-objective
evolutionary algorithm based on decomposition (MOEA/D)
[5]. The general goal of EMOAs is to search for a set of
solutions with good convergence and diversity in the objec-
tive space. The balance between convergence and diversity
in the objective space is one of the most important issues
in evolutionary multi-objective optimization (EMO) [6]–[9].
In environmental and mating selection, most EMOAs prefer
solutions with good convergence and then solutions with
good diversity in the objective space (e.g., the non-dominated
sorting and the crowding distance in NSGA-II). That is, they
use convergence-first selection criteria. It is worth mentioning
that there are a few EMOAs which prefer diversity in the
objective space first, e.g., MOEA/D-M2M (multi-objective
to multi-objective) [10]. The M2M method decomposes the
objective space into a number of sub-regions. In each sub-
region, at least one solution is preserved regardless of its
convergence quality.

However, these EMOAs cannot solve MMOPs due to the
lack of diversity maintenance in the decision space, i.e.,
they are unable to find equivalent Pareto optimal solutions.
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Recently, evolutionary multi-modal multi-objective algorithms
(EMMAs) have been proposed to address this issue, such as
Omni-optimizer [11], decision space based niching NSGA-
II (DN-NSGA-II) [12], double-niched evolutionary algorithm
(DNEA) [13], and MOEA/D with addition and deletion
operators (MOEA/D-AD) [14]. These algorithms are based
on existing EMOAs and niching methods [15] to promote
diversity in the decision space.

In evolutionary multi-modal multi-objective optimization
(EMMO), in addition to the balance between convergence and
diversity in the objective space, we should consider two more
balances. One is the balance between diversity in the objective
space and that in the decision space. The other is the balance
between convergence and diversity in the decision space.

In [16], MOPs whose PFs offer different degrees of search
difficulty in different regions are proposed and discussed. The
convergence-first EMOAs can obtain only those solutions that
are close to easy regions. That is, they fail to maintain diversity
in the objective space while converging. This phenomenon is
termed as the imbalance between convergence and diversity
in the objective space. This issue can be well solved by the
diversity-first EMOAs, such as MOEA/D-M2M. Intuitively,
such an imbalance may also exist in an MMOP. It could
be handled by the same manner proposed in [16]. In [3],
[13], MMOPs with the imbalance (or inconsistency) between
diversity in the objective space and that in the decision space
are proposed and discussed, where a uniformly and widely
distributed PS in the objective space is not uniformly or widely
distributed in the decision space, or vice versa. Diversity
maintenance both in the objective and decision spaces is
suggested to handle this imbalance.

To the best of our knowledge, there exists no study on the
imbalance between convergence and diversity in the decision
space in EMMO. In an MMOP, one equivalent Pareto optimal
solution may be more difficult to find than another. Under
such a condition, due to the convergence-first selection criteria
in existing EMMAs, the population quickly converges toward
equivalent Pareto optimal solutions which are easy to find.
This results in loss of diversity in the decision space and makes
them struggle to search for equivalent Pareto optimal solutions.
Due to such an MMOP producing an imbalance between the
emphasis on achieving convergence and preserving diversity
in the decision space, we refer to it as an MMOP with the
imbalance between convergence and diversity in the decision
space (MMOP-ICD).

In Fig. 1, we show the solutions obtained by DNEA on
the two-objective imbalanced distance minimization problem
(IDMP) in Type 1 with α = 3 in a single run. This particular
run is associated with the result which is the closest to
the mean performance metric value among 40 runs. This
optimization problem is an MMOP-ICD, which is described
in detail in Subsection III-B. As shown in Fig. 1 (a), the PS of
this optimization problem are two line segments, i.e., Xa =
{(y,−0.5)| − 0.6 ≤ y ≤ −0.4} and Xb = {(y, 0.5)|0.4 ≤
y ≤ 0.6}. For any solution in Xa, there is a solution in
Xb which has the same objective vector. That is, they are
equivalent Pareto optimal solutions. However, the solutions in
Xb are more difficult to find than those in Xa. We can see
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Fig. 1. The PS of a two-objective imbalanced distance minimization problem
and the solutions obtained by DNEA on this problem in a single run.

from Fig. 1 (b) that DNEA cannot find the solutions in Xb.
In this study, we first propose a benchmark set called IDMP.

We show that existing EMMAs are unable to handle this
imbalance by applying them to IDMP. Next, we present a novel
evolutionary algorithm using a convergence-penalized density
method (CPDEA) to solve these problems. In CPDEA, the dis-
tances among solutions in the decision space are transformed
based on their local convergence quality. Their density values
are estimated based on the transformed distances. The use of
these density values as the selection criterion makes CPDEA
efficient in searching for equivalent Pareto optimal solutions.

This paper has two main contributions:
1) One is the introduction of the concept of MMOP-ICD.

Based on this concept, we propose a new benchmark set
called IDMP. To the best of our knowledge, the concept
of MMOP-ICD has never been established. Most existing
benchmark MMOPs are not MMOP-ICDs. In those existing
MMOPs, the difficulty in finding each equivalent Pareto
optimal solution is the same, which is not likely occurred
in a real-world MMOP. They are easy to solve by existing
EMMAs due to this special characteristic. The use of
only those existing MMOPs as test problems may mislead
the performance evaluation of EMMAs and the research
direction in the development of EMMAs. In this study, we
introduce the concept of MMOP-ICD, where the difficulties
of finding equivalent Pareto optimal solutions are different.
MMOP-ICDs should be more general than others in the
real world. In the proposed IDMP, the difficulty in finding
each equivalent Pareto optimal solution is controllable. The
numbers of objectives, decision variables, and equivalent
Pareto optimal solutions are scalable. More importantly,
IDMP is relevant to real-world applications, which is
discussed in Subsection III-C. The use of the proposed
IDMP as test problems will greatly facilitate the healthy
development of the EMMO research field.

2) The other is the proposal of CPDEA. In CPDEA, we
propose (i) a convergence-penalized density method as
the selection criterion; (ii) a double k-nearest neighbor
method to evaluate the diversity of solutions both in the
objective and decision spaces; and (iii) two reproduction
operators for exploration and exploitation, respectively.
Our CPDEA is the first attempt to solve MMOP-ICDs.
The selection criterion in CPDEA is conceptually different
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from those in existing EMMAs. The choice of a selection
criterion is the key issue in the design of any EMMA.
Existing EMMAs are unable to solve MMOP-ICDs due
to their convergence-first selection criteria. CPDEA uses a
convergence-penalized density method as the selection cri-
terion. This method can not only avoid premature conver-
gence but also efficiently search for equivalent Pareto op-
timal solutions. Our experimental results demonstrate that
CPDEA performs significantly better than the convergence-
first EMMAs on IDMP.

The remainder of this paper is organized as follows. In
Section II, related studies on EMMO are reviewed for the
completeness of the presentation. The proposed IDMP and
CPDEA are described in detail in Sections III and IV, respec-
tively. Section V shows the experimental design and results.
Section VI concludes the paper and provides future research
directions.

II. RELATED WORKS

A. Multi-Modal Multi-Objective Optimization Problems

MMOPs are commonly seen in real-world applications [17],
[18]. In [3], the definition of an MMOP is given as follows:

Definition 1. For an MOP in (1), if there exists at least one
local Pareto optimal solution or at least two equivalent Pareto
optimal solutions for any point on the PF, then the MOP is
considered as an MMOP.

A local Pareto optimal solution is a solution that is non-
dominated in its neighborhood in the decision space. Note
that here we do not regard a Pareto optimal solution as a local
one. As reported in [3], it is more complicated to solve an
MMOP by finding its local Pareto optimal solution(s). Thus
our goal in this study is to search for the equivalent Pareto
optimal solutions corresponding to a set of well distributed
points on the PF.

In [11], [12], [19], an MMOP is also defined as an MOP
which have more than one equivalent Pareto optimal subset
corresponding to the entire PF. This definition can be regarded
as a special case of Definition 1. In this special case, the
number of equivalent Pareto optimal solutions for every point
on the PF is the same.

Several benchmarks of MMOPs have been proposed under
these definitions. In [20], a two-objective MMOP called TWO-
ON-ONE was proposed. It has two equivalent Pareto optimal
subsets in the two-dimensional decision space. Later in [19],
the same authors proposed three types of SYM-PART whose
equivalent Pareto optimal subsets are nine line segments.
Rotation and transformation of the line segments make the
latter two types of SYM-PART more difficult to solve. In
[11], the Omni-test problem was proposed. The numbers of
both equivalent Pareto optimal subsets and decision variables
are controllable.

In [21], MMF1-8 with two objectives and two decision
variables were presented. MMF1 and MMF2 are relatively
simple functions which were originally proposed in [12].
MMF3-8 are more complicated. In particular, The equivalent
Pareto optimal subsets of MMF3 and MMF6 overlap in every

dimension. Very recently, more scalable test problems were
added to this benchmark set [22].

MMMOP1-6 were proposed in [3]. The numbers of ob-
jectives, decision variables and equivalent Pareto optimal
solutions are scalable in all the MMMOPs. MMMOP2 and
MMMOP5 address the imbalance between diversity in the
objective space and that in the decision space. In MMMOP4,
the number of equivalent Pareto optimal solutions for every
point on the PF is not the same.

Distance minimization problems (DMPs) [23] or Polygon-
based problems [24] are another kind of MMOPs. The objec-
tives are to minimize the distances to the vertexes of several
polygons in the two-dimensional decision space. Each polygon
with the same shape and size is an equivalent Pareto optimal
subset. In [13], two new types of DMPs were proposed. One
is with the imbalance between diversity in the objective space
and that in the decision space. The other has a number of local
Pareto optimal solutions by changing the size of polygons.
Very recently, four types of constrained DMPs are discussed
in [25].

However, those MMOPs have not considered the imbalance
between convergence and diversity in the decision space. In
most of them, the difficulty in finding each equivalent Pareto
optimal solution (subset) is the same. In Section III, we
propose a novel benchmark set called IDMP in which some
equivalent Pareto optimal subsets are more difficult to find.

B. Evolutionary Multi-Modal Multi-Objective Algorithms

Early attempts to solve MMOPs include Omni-optimizer
[11], Niching-covariance matrix adaptation (Niching-CMA)
[26], diversity integrating optimizer (DIOP) [27], etc. The
framework of Omni-optimizer is NSGA-II. Different from
NSGA-II, Omni-optimizer evaluates the crowding distances
of solutions both in the objective and decision spaces. This
increases its ability to search for multiple equivalent Pareto
optimal subsets. In Niching-CMA, the distances between so-
lutions in the objective and decision spaces are summed up
to calculate the niche function. DIOP is a set-based algorithm
where a weighted sum function of two indicators is used to
evaluate a solution set. The two indicators evaluate diversity
in the objective and decision spaces, respectively.

A number of new EMMAs were proposed in recent years.
DN-NSGA-II [12] is also developed based on NSGA-II. It
adopts a decision space based niching method in the mating
selection. The same authors later proposed a multi-objective
particle swarm optimization algorithm using ring topology
and special crowding distance (MO Ring PSO SCD) [21].
The special crowding distance is a modification of that in
Omni-optimizer, which de-emphasizes the negative effect from
boundary solutions. Besides, MO Ring PSO SCD adopts a
ring topology neighborhood [28] to enhance PSO’s search
ability.

A multi-modal multi-objective differential evolution opti-
mization algorithm (MMODE) was proposed in [29]. The
selection criteria in MMODE are similar to those in Omni-
optimizer. A modified DE operator was introduced to promote
diversity in the decision space.
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In [13], DNEA was proposed, where the niche-based shar-
ing function [30] is employed in both the objective and
decision spaces to estimate a solution’s density. One advantage
of this sharing function is its inherent ability to normalize the
objective and decision spaces into the same scale.

A modified MOEA/D with addition and deletion operators,
termed MOEA/D-AD, was proposed in [14]. In MOEA/D-AD,
a set of reference vectors is used to guarantee diversity in
the objective space. Then for each reference vector, a niching
method is used to promote diversity in the decision space. One
characteristic feature of MOEA/D-AD is that each reference
vector can have multiple solutions.

A multi-modal multi-objective evolutionary algorithm using
two-archive and recombination strategies (TriMOEA-TA&R)
was presented in [3]. Before the evolution, TriMOEA-TA&R
analyzes the properties of decision variables and the rela-
tionships among them. This is useful in the recombination
strategy to generate equivalent Pareto optimal solutions. The
cooperative work between the convergence and the diversity
archives increases the search efficiency. Similar to MOEA/D-
AD, the diversity archive also uses a set of reference vectors
in the objective space.

All of the above mentioned EMMAs are developed based on
convergence-first EMOAs. Therefore, their selection criteria
are similar to these EMOAs. In Sections III and V, we will
show that the convergence-first EMMAs are unable to maintain
diversity in the decision space when solving MMOP-ICDs.
To overcome this issue, we propose a novel evolutionary
algorithm using a convergence-penalized density method in
Section IV.

III. OPTIMIZATION PROBLEMS WITH IMBALANCE
BETWEEN CONVERGENCE AND DIVERSITY IN THE

DECISION SPACE

A. Definition of MMOP-ICD

In this study, we give the definition of an MMOP-ICD as
follows:

Definition 2. An MMOP is defined to be an MMOP-ICD, if
it satisfies one or both of the following conditions:
1) For a point on the PF, solutions close to one equivalent

Pareto optimal solution are more likely to dominate solu-
tions close to another equivalent Pareto optimal solution.

2) For a point on the PF, the complexity of searching for one
equivalent Pareto optimal solution is lower than that of
another equivalent Pareto optimal solution.

Here, the complexity of searching for an equivalent Pareto
optimal solution can be regarded as the required computation
cost to find it. When an evolutionary algorithm is used to
search for the equivalent Pareto optimal solution, the higher
the complexity is, the more fitness evaluations are required to
find it. Equivalent Pareto optimal solutions can be replaced by
equivalent Pareto optimal subsets in this definition.

It is difficult for a convergence-first EMMA mentioned
in Section II to find equivalent Pareto optimal solutions of
an MMOP-ICD. Due to the first condition, the solutions
close to some equivalent Pareto optimal solutions have better

convergence quality than those close to other equivalent Pareto
optimal solutions. Due to the second condition, solutions with
good convergence quality are quickly found around some
equivalent Pareto optimal solutions, while the convergence
quality of the solutions found around other equivalent Pareto
optimal solutions is poor. We can infer that the population
quickly converges to some equivalent Pareto optimal solu-
tions, since the solutions around them are preferred by the
convergence-first selection criterion.

In this study, to check whether an MMOP satisfies the first
condition, we calculate the average Pareto rank of solutions
close to each equivalent Pareto optimal solution (subset). If
the average Pareto rank of solutions close to every equivalent
Pareto optimal solution (subset) is the same, the first condition
is not met.

To check whether the second condition is met, we use
an evolutionary algorithm to solve several new optimization
problems. Each of these optimization problems is transformed
from the MMOP. It has one optimal solution (or PS), which is
the same to an equivalent Pareto optimal solution (or subset)
of the MMOP. The computational resource of solving the
optimization problem reflects the complexity of searching for
the corresponding equivalent Pareto optimal solution (subset).

Let us take MMF1 [21] as an example to explain how to
check whether an MMOP satisfies these conditions and why
it is not an MMOP-ICD. MMF1 is formulated as follows:
min f1(x) = |x1 − 2|,
min f2(x) = 1−

√
|x1 − 2|+ 2(x2 − sin(6π|x1 − 2|+ π))2,

s.t. x1 ∈ [1, 3], x2 ∈ [−1, 1].
(2)

In Fig. 2 (a), we show the fitness landscape based on Pareto
rank [31] of MMF1 for an intuitive understanding. In this
figure, 10, 201 (101×101) solutions are uniformly sampled in
the entire decision space. They are in different colors based
on their Pareto ranks. A brighter (warmer) tone corresponds
to a lower Pareto rank (i.e., solutions with better convergence
quality). The curve segments with x1 ∈ [1, 2] and x1 ∈ [2, 3]
are the first and second equivalent Pareto optimal subsets,
respectively. We can see from Fig. 2 (a) that the patterns with
x1 ∈ [1, 2] and x1 ∈ [2, 3] are symmetrical about x1 = 2.
This implies that the difficulties in finding the two equivalent
Pareto optimal subsets are the same.

To check whether MMF1 meets the first condition, in Fig. 2
(b), we show the average Pareto rank of solutions close to each
equivalent Pareto optimal subset based on Fig. 2 (a). We first
give a threshold value dth, which is set to 0.02, 0.04, . . . , 0.4,
respectively. Then, we calculate the distances between each
equivalent Pareto optimal subset and the solutions in Fig. 2 (a).
The solutions whose distances to the first (second) equivalent
Pareto optimal subset are smaller than dth are denoted as a
solution set S1 (S2). Finally, we use the non-dominated sorting
to rank all the solutions in S1 and S2, and calculate the average
Pareto rank of solutions in each solution set. We can see from
Fig. 2 (b) that the average Pareto ranks of S1 and S2 are
exactly the same. This suggests that MMF1 does not satisfy
the first condition.

To check whether MMF1 meets the second condition, we
use DNEA [13] to solve two MOPs (denoted as MOP1 and
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Fig. 2. (a) The fitness landscapes based on Pareto rank of MMF1. The curve segments with x1 ∈ [1, 2] and x1 ∈ [2, 3] are the first and second equivalent
Pareto optimal subsets, respectively. (b) The average Pareto rank of solutions close to each equivalent Pareto optimal subset. S1 (S2) is a set of solutions
whose distances to the first (second) equivalent Pareto optimal subset are smaller than dth. (c) The IGDX value (averaged over 40 runs) at each generation
when DNEA was used to solve MOP1 and MOP2, respectively.

MOP2). The objective functions of these MOPs are the same
to those of MMF1. However, the bound (constraint) of x1 is
[1, 2] and [2, 3] in MOP1 and MOP2, respectively. Therefore,
the PSs of MOP1 and MOP2 are the same to the first and
second equivalent Pareto optimal subset of MMF1, respec-
tively. Searching for the PS of MOP1 (MOP2) is equivalent
to searching for the first (second) equivalent Pareto optimal
subset of MMF1. If it takes less computational resource to find
one PS than the other, MMF1 meets the second condition.

In Fig. 2 (c), we show the results of averaged Inverted
Generational Distance in the decision space (IGDX) [32]
over 40 runs when DNEA was used to solve the MOPs1.
IGDX measures the distance in the decision space between
each reference point on the PS and its nearest point in the
obtained solution set. Here, we uniformly sample 1, 000 points
on the true PS as the reference points. A faster decrease of
the IGDX value over generations indicates that it takes less
computational resource for the algorithm to find the PS. That
is, the complexity of searching for the PS is lower. Note
that the decrease rate of IGDX is also dependent on the
search power of the algorithm. Although the results of IGDX
cannot tell the exact searching complexity, we can know which
problem corresponds to a higher complexity (i.e., which PS is
more difficult to find). From Fig. 2 (c), we can see that the
curves of IGDX for the two problems are the almost the same
(they are very slightly different since evolutionary algorithm
is stochastic). Therefore, the complexities of searching for the
equivalent Pareto optimal subsets of MMF1 are the same, and
the second condition is not met.

According to the above discussions, we can see that MMF1
is not an MMOP-ICD since it satisfies neither of the con-
ditions. In the supplementary material, we also investigate
the property of MMMOP1 [3], Omin-test problem [11], and
SYM-PART [19] in the same way. The results show that
these MMOPs are not MMOP-ICDs. Although a few existing
MMOPs, such as the variants of MMF1 [22], satisfy one or

1Parameter settings of DNEA in Section III: Simulated binary crossover
and polynomial mutation are used. The distribution index is specified as 20
in crossover and mutation. The crossover and mutation probabilities are 1.0
and 0.5, respectively. The population size is set to be 60. The termination
criterion is that the population has evolved 300 generations. For each problem,
40 independent runs are executed.

both conditions, the concept of MMOP-ICD has not been
proposed nor discussed in the literature.

In the next subsection, we introduce four types of two-
objective IDMPs which are MMOP-ICDs. The imbalance of
the first two and the third types is mainly caused by the
first and second conditions, respectively. Both conditions are
related to the imbalance of the fourth type.

B. Two-Objective Imbalanced Distance Minimization Prob-
lems

The two-objective IDMPs proposed in this study have
two equivalent Pareto optimal subsets in the two-dimensional
decision space. Their general objective functions are given as
follows:

f1(x) = min (|x1 + 0.6|+ g1(x), |x1 − 0.4|+ g2(x)),
f2(x) = min (|x1 + 0.4|+ g1(x), |x1 − 0.6|+ g2(x)),
s.t. x1 ∈ [−1, 1], x2 ∈ [−1, 1],

(3)
where g1(x) ≥ 0 and g2(x) ≥ 0 are difficulty functions
corresponding to the first and second equivalent Pareto optimal
subsets, respectively. The first equivalent Pareto optimal subset
is x1 ∈ [−0.6,−0.4] when g1(x) = 0, and the second
equivalent Pareto optimal subset is x1 ∈ [0.4, 0.6] when
g2(x) = 0. We denote them as EPS1 and EPS2, respectively.

The difficulty functions in each type of two-objective IDMP
are given as follows:

Type 1:
g1(x) = |x2 + 0.5|,
g2(x) = α|x2 − 0.5|,
α ≥ 1.

(4)

Type 2:
g1(x) = 100(x2 + 0.5)2,
g2(x) = 100|x2 − 0.5|2−α,
α ∈ [0, 2).

(5)

Type 3:

g1(x) = 100(x2 + 0.5)2,
g2(x) = 100(x2 − 0.5 + α(x1 − 0.5))2,
α ∈ [0, 5].

(6)
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Type 4:

g1(x) = 100((x2 + 0.5)2 − cos(2π(x2 + 0.5)) + 1),
g2(x) = 100((x2 − 0.5)2 − cos(2πα(x2 − 0.5)) + 1),
α is a positive integer.

(7)
In each type, α is a parameter which determines the

difficulty in finding EPS2. The larger value of α, the more
difficult to find EPS2. In particular, when α is 1, 0, 0, and 1
in Types 1, 2 , 3, and 4, respectively, the difficulties in finding
EPS1 and EPS2 are exactly the same. When α is larger than
1, 0, 0, and 1 in Types 1, 2 , 3, and 4, respectively, EPS2 is
more difficult to find than EPS1.

In the following, we use the same method as that in
Subsection III-A to explain why these optimization problems
are MMOP-ICDs:
(1) For an intuitive understanding, in Fig. 3, we show the

fitness landscape based on Pareto rank of these opti-
mization problems, where the line segments are EPS1
(x1 ∈ [−0.6,−0.4]) and EPS2 (x1 ∈ [0.4, 0.6]).

(2) To check the first condition, based on Fig. 3, Fig. 4 shows
the average Pareto rank of solutions close to each equiva-
lent Pareto optimal subset in each type, where S1 and S2

are the solutions whose distances to EPS1 and EPS2 are
smaller than dth, respectively. (dth = 0.02, 0.04, . . . , 0.4)

(3) To check the second condition, in each sub-figure of Fig. 5,
we show the results of IGDX over 40 runs when DNEA
was used to solve the following optimization problem:

f1(x) = |x1 − 0.4|+ g2(x),
f2(x) = |x1 − 0.6|+ g2(x),
s.t. x1 ∈ [−1, 1], x2 ∈ [−1, 1],

(8)

where g2(x) is the same as that in the corresponding type.
For each type, α in g2(x) is set to four different values as
shown in Table I. The PS of the MOP in (8) is the same
with EPS2 of the MMOP in (3). When α is 1, 0, 0, and
1 in Types 1, 2 , 3, and 4, respectively, searching for this
PS (EPS2) is equivalent to searching for EPS1.

For Type 1, we can observe from Figs. 3 (a) and 4 (a)
that solutions close to EPS1 generally have lower Pareto ranks
than solutions close to EPS2. This indicates that the DMP in
Type 1 satisfies the first condition. However, we can see from
Fig. 5 (a) that the curves of IGDX with different settings of
α are almost the same. This implies that the complexities of
searching for EPS1 and EPS2 with these values of α are almost
the same. Therefore, the IDMP in Type 1 is an MMOP-ICD,
and the imbalance is mainly caused by the first condition, i.e.,
solutions close to one equivalent Pareto optimal subset have a
higher chance to dominate solutions close to the other.

From Figs. 3 (b), 4 (b), and 5 (b), we can see that
the situation in Type 2 is similar to that in Type 1. Thus
the imbalance in Type 2 is also mainly caused by the first
condition.

We can see from Fig. 3 (c) that the pattern around EPS2
looks a rotated version from the pattern around EPS1. The
difference between the average Pareto ranks of S1 and S2

in Fig. 4 (c) is quite small. Therefore, the first condition is
unlikely to be the primary cause for the imbalance in Type 3.

TABLE I
RESULTS OF DNEA IN SOLVING THE TWO-OBJECTIVE IDMPS UNDER

DIFFERENT SETTINGS OF α

 

Close to 

EPS1

Close to 

EPS2

Only 

EPS1
Both

Only 

EPS2

α = 1 49.5% 50.5% 13 14 13

α = 2 82.9% 17.1% 27 12 1

α = 3 92.8% 7.2% 34 6 0

α = 4 95.2% 4.8% 37 3 0

α = 0 50.2% 49.8% 9 22 9

α = 0.2 66.5% 33.5% 21 11 8

α = 0.4 74.4% 25.6% 23 13 4

α = 0.6 94.0% 6.0% 37 1 2

α = 0 50.2% 49.8% 9 22 9

α = 0.2 59.0% 41.0% 12 20 8

α = 0.4 73.6% 26.4% 13 24 3

α = 0.6 90.9% 9.1% 27 12 1

α = 1 48.9% 51.1% 11 17 12

α = 2 77.7% 22.3% 27 8 5

α = 4 93.7% 6.3% 37 1 2

α = 8 97.5% 2.5% 39 0 1

T
y

p
e
 4

Percentage of 

Obtianed Solutions 
Number of Runs 

T
y

p
e
 1

T
y

p
e
 2

T
y

p
e
 3

The interaction (or correlation) between x1 and x2 in g2(x)
increases the complexity of searching for EPS2, which makes
the second condition satisfied and results in the imbalance in
Type 3. The larger value of α, the stronger interaction between
x1 and x2 in g2(x) and the higher complexity of searching for
EPS2. This can be verified from Fig. 5 (c), where a large value
of α slows down the convergence rate according to IGDX.
Thus the second condition mainly causes the imbalance in
Type 3.

For Type 4, on one hand, we can see from Figs. 3 (d) and
4 (d) that solutions close to EPS1 are more likely to have
lower Pareto ranks than solutions close to EPS2. On the other
hand, due to the local optima in g2(x), there are some local
Pareto optimal regions close to EPS2 (e.g., the regions where
x2 is around 0.25 and 0.75 in Fig. 3 (d)). This increases
the complexity of searching for EPS2 since the population
may trap into the local Pareto optimal regions during the
search process. The number of local Pareto optimal regions
increases as α increases. We can see from Fig. 5 (d) that
increasing α leads to a slow decrease of the IGDX value over
generations. Therefore, the imbalance of Type 4 is induced by
both conditions.

To have a comprehensive understanding of the deficiency of
existing EMMAs in solving MMOP-ICDs, we show the results
of DNEA in solving the four types of two-objective IDMPs
in Table I. Table I lists the average percentage of solutions
close to each equivalent Pareto optimal subset over 40 runs.
Note that for the results in Table I, if the distance between
a solution and EPS1 is smaller than 0.04, it is viewed to be
close to EPS1. A solution close to EPS2 is defined in the same
way. Table I also lists the number of runs where the obtained
solutions are close to only EPS1, only EPS2, and both of them
(i.e., some are close to EPS1 and others are close to EPS2),
respectively.

We can see from Table I that when α is 1, 0, 0, and 1
in Types 1, 2, 3, and 4, respectively, i.e., the difficulties in
finding EPS1 and EPS2 are the same, the percentages of the
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Fig. 3. The fitness landscapes based on Pareto rank of four types of two-objective IDMPs. For each type, 10, 201 (101 × 101) solutions are uniformly
sampled in the entire decision space. They are in different colors based on their Pareto ranks. A brighter (warmer) tone corresponds to a lower Pareto rank.
The line segments are the first (x1 ∈ [−0.6,−0.4]) and second (x2 ∈ [0.4, 0.6]) equivalent Pareto optimal subsets, i.e., EPS1 and EPS2.
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Fig. 4. The average Pareto rank of solutions close to each equivalent Pareto optimal subset based on Fig. 3. S1 and S2 are the solutions whose distances to
EPS1 and EPS2 are smaller than dth, respectively.
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Fig. 5. The IGDX value (averaged over 40 runs) with respect to generations when DNEA was to solve the optimization problem in (8) under different settings
of α.

obtained solutions close to EPS1 and EPS2 are almost equal
to each other (around 50%). As α increases, the percentages
of the obtained solutions close to EPS1 and EPS2 increase
and decrease, respectively. This suggests that DNEA struggles
to search for EPS2. We get similar observations according to
the number of runs.

One interesting thing to note is that when α is 1, 0, 0,
and 1 in Types 1, 2 , 3, and 4, respectively, the number of
runs where the obtained solutions are close to both equivalent
Pareto optimal subsets is much less than 40. That is, DNEA
may even fail when the difficulties in finding EPS1 and EPS2
are the same. Due to the stochastic search process, there is a
chance that more solutions are closer to one equivalent Pareto
optimal subset than the other equivalent Pareto optimal subset
in some generation, which leads to the convergence to that
equivalent Pareto optimal subset through the convergence-first
selection criterion. Therefore, even without the imbalance, the

convergence-first selection criterion may have a negative effect
in searching for all equivalent Pareto optimal subsets.

Note that we have also applied MO Ring PSO SCD,
TriMOEA-TA&R, DN-NSGA-II, and Omni-optimizer to these
problems under the same settings of α as in Table I. Similar
results to those of DNEA are observed. Those results are not
shown in this section due to the page limitation. We will show
and discuss their performance in Section V.

C. Scalable Imbalanced Distance Minimization Problems

In this subsection, we extend four types of IDMPs with more
than two objectives and two decision variables. In the proposed
IDMPs, the numbers of objectives, decision variables, and
equivalent Pareto optimal subsets are denoted as M , n, and
P , respectively. There exist P regular polygons with the same
size in the sub-space x1-x2. Xp,m = (Xp,m,1, Xp,m,2) and
Cp = (Cp,1, Cp,2) denote the mth vertex and the center of
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the pth polygon, respectively (m = 1, . . . ,M, p = 1, . . . , P ).
The radius r of a polygon is the distance between a vertex
and the center. These polygons should be far away from each
other. That is, the distances between polygons should be much
larger than their radius.

The mth (m = 1, . . . ,M ) objective function of an IDMP is

fm(x) = minp=1,...,P {d(Xp,m, x1, x2) + gp(x)},
s.t. x = (x1, . . . , xn) ∈ [−1, 1]n, (9)

where d(Xp,m, x1, x2) is the Euclidean distance
between x and Xp,m in the sub-space x1-x2, i.e.,√

(Xp,m,1 − x1)2 + (Xp,m,2 − x2)2, and gp(x) ≥ 0 is
the difficulty function corresponding to the pth equivalent
Pareto optimal subset. The pth equivalent Pareto optimal
subset is the inside (including the sides) of the pth polygon
with gp(x) = 0, which has been proven in [33].

In each type of IDMP, gp(x) is given as follows:
Type 1:

gp(x) =
∑n
i=3 αp,i|xi + 1− 2p

P+1 |,
αp,i ≥ 1, i = 3, . . . , n.

(10)

Type 2:

gp(x) =
∑n
i=3 100|xi + 1− 2p

P+1 |
2−αp,i ,

αp,i ∈ [0, 2), i = 3, . . . , n.
(11)

Type 3:

gp(x) =
∑n
i=3 100(xi + 1− 2p

P+1 + αp,iyp(x1, x2))
2,

yp(x1, x2) = x1 − Cp,1 + x2 − Cp,2,
αp,i ∈ [0, p

(P+1)r ], i = 3, . . . , n.
(12)

Type 4:

gp(x) =

n∑
i=3

100[(xi + 1− 2p

P + 1
)2

− cos(2παp,i(xi + 1− 2p

P + 1
)) + 1],

αp,i is a non-negative integer, i = 3, . . . , n.

(13)

For each type, the larger value of αp,i, p = 1, . . . , P, i =
3, . . . , n, the greater difficulty in finding the pth equivalent
Pareto optimal subset.

In this study, we specify a three-objective problem with
three decision variables and a four-objective problem with four
decision variables for each type, i.e., eight problems in total.
Each problem has four polygons with r = 0.1. The centers of
the first, second, third, and fourth polygons are (−0.5,−0.5),
(0.5,−0.5), (0.5, 0.5), and (−0.5, 0.5), respectively. Fig. 6
shows the polygons of the three-objective problems. The
settings of αp,i(p = 1, 2, 3, 4, i = 3, 4) in these problems are
listed in Table II. By such settings, the difficulty in finding
the first, second, third, and fourth equivalent Pareto optimal
subsets increases gradually.

It is worthy to note that IDMPs are relevant to real-world
applications, such as map-based problems [34]. For a simple
example, let us assume Fig. 6 is a two-dimensional map, where
X1,1 and X2,1 are schools, X1,2 and X2,2 are supermarkets,
and X1,3 and X2,3 are hospitals. The goal is to find an
apartment on the map which has the lowest travel cost to
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Fig. 6. The polygons of the three-objective IDMPs. Xp,m, p =
1, . . . , 4,m = 1, . . . , 3, is the m-th vertex of the pth polygon. Each Polygon
is an equivalent Pareto optimal subset when gp(x) = 0.

TABLE II
SETTINGS OF αp,i(p = 1, 2, 3, 4, i = 3, 4) IN THREE- AND

FOUR-OBJECTIVE IDMPS

 

α 1,3 α 2,3 α 3,3 α 4,3 α 1,3 α 2,3 α 3,3 α 4,3 α 1,4 α 2,4 α 3,4 α 4,4

Type 1 1 2 3 4 1 2 3 4 1 2 3 4

Type 2 0 0.2 0.4 0.6 0 0.2 0.4 0.6 0 0.2 0.4 0.6

Type 3 0 0.1 0.2 0.3 0 0.05 0.1 0.15 0 0.05 0.1 0.15

Type 4 1 2 3 4 1 2 3 4 0 0 0 0

Three Objective Four Objective

either school, supermarket, and hospital. In this optimization
problem, the first two decision variables are the location of the
apartment, i.e., x1 and x2. The travel methods are a variety of
public transport services such as railways and buses operated
by different companies. The choice of travel methods is the
third decision variable, i.e., x3. The travel cost is the ticket
price, which is based on the distance between two locations
and government policies. This is a three-objective optimization
problem. The mth (m = 1, 2, 3) objective, i.e., the lower travel
cost from the apartment to X1,m and X2,m, can be formulated
as

fm(x) = minp=1,2 {d(Xp,m, x1, x2) + gp(x3)}, (14)

where d(Xp,m, x1, x2) is the distance between the apartment
and Xp,m, and gp(x3) ≥ 0 is the difficultly function de-
termined by government policies. Triangles X1,1X1,2X1,3

and X2,1X2,2X2,3 are the first and second equivalent Pareto
optimal subsets, respectively.

The region around triangle X2,1X2,2X2,3 is downtown.
Since this region is too busy and crowded, the government has
implemented a policy to raise most ticket prices for rides from
the other regions to this region. That is, g2(x3) is more likely
to be larger than g1(x3), which makes the second equivalent
Pareto optimal subset more difficult to find than the first
one. As a result, it is very difficult to find a good (Pareto
optimal) apartment close to X2,1X2,2X2,3 for a convergence-
first EMMA. People who like to live in the downtown may
be disappointed if they use such an EMMA to search for an
apartment. Our CPDEA in the next section can help these
people by finding both equivalent Pareto optimal subsets.
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IV. PROPOSED METHOD

A. Motivation

One challenge of handling the imbalance between conver-
gence and diversity in the decision space is to avoid premature
convergence. When a convergence-first EMMA is used to
solve an MMOP-ICD, the population is very likely to quickly
converge to some equivalent Pareto optimal solutions which
are easy to find. This phenomenon has been discussed in
Subsection III-A and confirmed by the experimental results
in Subsection III-B.

One way to deal with this challenge is to treat diversity in
the decision space more important than convergence, i.e., to
use a decision space diversity measure as the primary selection
criterion. To the best of our knowledge, there exist no EMMAs
using such a selection criterion. However, we can easily imag-
ine several methods in this way. For example, one intuitive
method is to use the density value in the decision space and
the convergence quality as the primary and secondary selection
criteria, respectively. For another example, we can use the idea
of M2M [16] (aforementioned in Section I) in the decision
space. Similar to the decomposition in the objective space,
we can decompose the decision space into a number of sub-
regions. In each sub-region, at least one solution is preserved
regardless of its convergence quality.

However, those methods are infeasible to solve MMOP-
ICDs due to their low search efficiency, i.e., poor convergence
ability. In the first method, the density value is a scalar. When
we select (or delete) solutions with the best (or worst) density
values one by one, the probability of having two solutions
with the same density value is extremely low. Consequently,
the secondary selection criterion will never be used. The
solutions obtained by this method is most likely to be uni-
formly distributed in the entire decision space. That is, the
population may never converge to the PS. The second method
may preserve solutions in a large number of sub-regions with
no Pareto optimal solution when the PS locates in a few
small sub-regions. In such a case, the search efficiency is very
low. Therefore, high search efficiency is another challenge of
handling the imbalance between convergence and diversity in
the decision space.

We can see from the above discussions that simultaneously
dealing with both challenges (i.e., avoiding premature conver-
gence and achieving high search efficiency) is not an easy task.
Not only avoiding premature convergence but also achieving
high search efficiency is the key to solve MMOP-ICDs.

Our basic idea is simple. We combine the density value in
the decision space and the convergence quality into a single
selection criterion. More specifically, the density value of a
solution is penalized by its local convergence quality. Note
that a solution’s local convergence quality is mainly measured
by its neighborhood, whereas the global one is measured by
all the solutions. The reason for using a local convergence
quality measure will be explained later in Fig. 7.

Selection based on this convergence-penalized density
(CPD) method leads to solutions covering the entire decision
space. Thus the population will not prematurely converge
to some equivalent Pareto optimal solutions which are easy

to find. Meanwhile, solutions with good local convergence
quality crowd around some promising regions, since their
density values are less penalized than those of solutions with
poor local convergence quality. This significantly increases
the efficiency of searching for more equivalent Pareto optimal
solutions. Therefore, the CPD method can well handle the
aforementioned challenges.

Our CPD method is based on the assumption that a solu-
tion close to an equivalent Pareto optimal solution has good
convergence quality. This is similar to the basic assumption
in evolutionary algorithms, where solutions with good fitness
values are close to the optimal solution(s).

Fig. 7 illustrates the population in the decision space during
the search process when the proposed CPD method is used to
solve an MMOP with two equivalent Pareto optimal subsets.
In this MMOP, the equivalent Pareto optimal subset on the
left is easier to find than the other. We also illustrate that of
the convergence-first method in most existing EMMAs (such
as DNEA and Omni-optimizer) for comparison. In Fig. 7, for
both methods in the initial phase, the population is widely
distributed in the entire decision space by random generation.

In the early phase, for the CPD method, the solutions around
the left subset are denser than the other solutions due to their
global (local as well) good convergence quality. Meanwhile,
the other solutions widely spread to explore potential Pareto
optimal solutions. Thus, it is promising to generate an off-
spring close to or in the right subset. By contrast, for the
convergence-first method, most solutions close to the right
subset are eliminated due to their poor convergence quality.
The chance to generate an offspring close to or in the right
subset is low.

In the later phase, for the CPD method, the algorithm finds
some solutions in the left subset. It also finds some solutions
gathering around the right subset due to their good local
convergence quality. An offspring closer to or in the right
subset is very likely to be generated by these solutions. If we
use a global convergence quality measure instead of a local
one, these solutions will become sparser since they have worse
global convergence quality than those in the left subset. Then
the search efficiency will be diminished. This is why we use a
local convergence quality measure in the CPD method. On the
other hand, for the convergence-first method, the population
continues to converge to the left subset in the later phase.
There is almost no chance to generate an offspring close to
the right subset.

In the final phase (i.e., when the stopping criterion is
met), most solutions selected by the CPD method are well
distributed in both subsets. However, the convergence-first
method can find only solutions in the left subset.

The illustration in Fig. 7 shows the conceptual advantage
of our CPD method when compared to the convergence-first
method in the existing EMMAs. Note that equivalent Pareto
optimal subsets can be replaced with equivalent Pareto optimal
solutions in this example. In the following subsections, we will
introduce the proposed evolutionary algorithm using the CPD
method in detail.
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CPD Method

Convergence-Frist
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Solution Equivalent Pareto Optimal Subset (Easy to Find) Equivalent Pareto Optimal Subset (Difficult to Find)

Fig. 7. Illustration of the population in the decision space during the search process when the proposed CPD method and the convergence-first method are
used for selection, respectively.

Algorithm 1 General Framework
Require: P (Population), N (Population Size), A (Archive)

1: P = Initialization (P );
2: A = Archive Update (P );
3: while the stopping criterion is not met do
4: Q = Reproduction (P , A);
5: P = CPD-Based Environmental Selection (P ∪Q);
6: A = Archive Update (A ∪Q);
7: end while
8: return A

B. General Framework
Algorithm 1 presents the overall framework of the proposed

CPDEA. In Algorithm 1, a population P of size N is randomly
initialized in the decision space (line 1). An archive A is
updated based on P (line 2). We set the maximum size
of A equal to N in this study. The stopping criterion is
the predefined maximum number NE of evaluated solutions.
While the stopping criterion has not been met (line 3), an
offspring Q is generated by a reproduction operator (line 4),
and then both P and A are updated by adding Q (lines 5 and
6). Here, we use a steady-state method [35] to update P and
A, i.e., only one offspring is produced and added to P and A
in each generation. One advantage of the steady-state method
is the high selection pressure induced by deleting the worst
solution in each generation [36]. P in the next generation
is selected by the CPD-based environmental selection. The
archive A preserves only non-dominated solutions with good
diversity both in the objective and decision spaces. At the end
of evolution, A is returned.

We will describe CPD-based environmental selection,
archive update, and reproduction operators in Subsec-
tions IV-C, IV-D and IV-E, respectively.

C. CPD-Based Environmental Selection
In our CPD-based environmental selection, P is updated by

removing the solution with the worst CPD value in P ∪ Q
since Q contains only one offspring. To calculate CPD values
of solutions, we first evaluate their local convergence quality.
Then we transform the distance between each pair of solutions
based on their local convergence quality. Finally, we estimate
the density values based on the transformed distances.

1) Local Convergence Quality: The local convergence
quality ci of solution xi ∈ P∪Q, i = 1, . . . , N+1 is calculated
as follows:

ci =

N+1∑
j=1

wi,jBi,j , (15)

where wi,j is a weight parameter, Bi,j is 1 if xi is dominated
by xj and 0 otherwise.
wi,j is defined as follows:

wi,j =
1

σ
√
2π

exp (−d
2
i,j

2σ2 ), (16)

where di,j is the Euclidean distance between xi and xj
in the decision space. We can see that wi,j is actually the
probability density function of normal distribution with mean
0 and standard deviation σ.
σ is given as

σ = η(
∏n

l=1 (xupper
l −xlower

l )

N+1 )
1
n , (17)

where η is a parameter given by the user, and xupper
l and

xlower
l are the upper and lower bounds of the lth decision

variable, respectively. Please refer to Subsection II-A in the
supplementary material for the sensitivity analysis of η.

According to (15), the smaller the value of ci is, the better
the local convergence quality is. Particularly, if xi is a non-
dominated solution, ci is 0. The reason for using (16) is that
(16) is a monotonically decreasing function. This function can
emphasize the local convergence quality by giving a larger
value to wi,j for xj which is closer to xi. Any other functions
which are monotonically decreasing with respect to di,j could
be also used instead of (16).

Fig. 8 illustrates the calculation of c1 in a solution
set {x1, . . . ,x7}. In Fig. 8, the Euclidean distance be-
tween x1 and each solution, i.e., d1,j , j = 1, . . . , 7 is
0, 0.8, 0.3, 1.9, 0.6, 1.5, 1.1, respectively. x1 is dominated
by x2, x3, and x7. Then {B1,j , j = 1, . . . , 7} =
{0, 1, 1, 0, 0, 0, 1}. The curve is a probability density function
of normal distribution with σ = 0.5 in (16). {w1,j , j =
2, 3, 7} ≈ {0.22, 0.67, 0.07}. c1 = w1,2 +w1,3 +w1,7 ≈ 0.96.
That is, c1 is equal to the total length of the solid line segments.

2) Distance Transformation: The transformed distance dti,j
between xi and xj is given as follows:

dti,j =
di,j

1+0.5(ci+cj)
. (18)
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Fig. 8. Illustration of the calculation of local convergence quality in (15).

According to (18), if xi and xj are both non-dominated
solutions, dti,j = di,j ; otherwise, dti,j becomes smaller than
di,j . By this transformation, distances from a solution with
poor local convergence quality to other solutions become
shorter. Thus the solution has a worse density value.

3) Density Estimation: Any density estimation method can
be used in our framework. Here, we choose the k-nearest
neighbor method [37] due to its ability to promote uniformity
[38]. By the k-nearest neighbor method, the CPD value,
fCPD(xi), of xi is calculated as

fCPD(xi) =
1

1+
∑K

k=1 d
t
i,k

, (19)

where dti,k, k = 1, . . . ,K are the smallest K values of
dti,j , j = 1, . . . , N + 1. The value of fCPD is in the range of
(0, 1]. The solution with the largest value of fCPD is regarded as
the worst one. Such a solution is removed in the environmental
selection.

D. Archive Update

We preserve only non-dominated solutions in the archive A.
If the number of these solutions exceeds N , we use a double k-
nearest neighbor method to evaluate their diversity quality both
in the objective and decision spaces. Since only one offspring
is added into A in each generation, the solution with worst
diversity quality is removed.

The double k-nearest neighbor method evaluates the fitness
of solution xi, i = 1, . . . , N + 1 by the following equation:

fDKN(xi) =
1

1+

∑K
k=1

d
obj
i,k

d
obj
mean

+

∑K
k=1

ddec
i,k

ddec
mean

,
(20)

where dobj
i,k (ddec

i,k), k = 1, . . . ,K are the Euclidean distances in
the objective (decision) space between xi and its K nearest
neighbors, and dobj

mean (ddec
mean) is the mean value of these

distances over all solutions. That is,

dobj
mean =

∑N+1
i=1

∑K
k=1 d

obj
i,k

(N+1)K , (21)

and
ddec

mean =
∑N+1

i=1

∑K
k=1 d

dec
i,k

(N+1)K . (22)

The reason for using dobj
mean and ddec

mean in (20) is to normalize
the objective and decision spaces into similar scales.

The value of fDKN is in the range of (0, 1]. The larger the
fDKN value is, the worse the fitness of the solution is. By
removing solutions with poor fDKN values during the search
process, we can finally obtain a set of non-dominated solutions
with good diversity both in the objective and decision spaces
in A.

E. Reproduction

In our CPDEA, there are two reproduction operators to
choose. The major purpose of the first reproduction opera-
tor is exploration in the entire decision space, where both
parents come from the population. The second reproduction
operator aims at exploitation of solutions in the archive. In
each generation, the first reproduction operator is used with
a pre-specified probability p ∈ [0, 1]. Otherwise, the second
reproduction operator is used.

In the first reproduction operator, we use the tournament
selection to choose parents, where two solutions are randomly
chosen from the population and compete based on their fCPD
values. The solution with smaller fCPD value is chosen as a
parent.

In the second reproduction operator, we first choose the
solution with the smallest fDKN value in the archive as the
first parent. Then, we find the n solutions nearest to the first
parent in the decision space in the population and the archive
(n is the number of decision variables). We randomly choose
one of these solutions as the other parent.

In the early stage of evolution, most solutions in the archive
may be close to the equivalent Pareto optimal solutions which
are easy to find. If we set a small value of p, i.e., give a
high chance to the second reproduction operator, the efficiency
of searching for other equivalent Pareto optimal solutions
may be reduced. On the contrary, setting a small value of
p in the latter stage of evolution may increase the efficiency
of approximating all the equivalent Pareto optimal solutions.
Therefore, we set p = 1 when the number of evaluated
solutions is less than NE/2 (NE is the predefined maximum
number of evaluated solutions) and p = 0.5 otherwise. Please
refer to the supplementary material for the investigation on the
effect of p.

V. EXPERIMENTS

A. Settings of Experiments

In this study, we use IDMPs with 2-4 objectives in each type
proposed in Section III as test problems (12 problems in total).
For the two-objective IDMPs in Types 1, 2, 3, and 4, we set
α to 3, 0.4, 0.4, and 4, respectively. The settings of three- and
four-objective IDMPs have been given in Subsection III-C.

We choose five state-of-the-art EMMAs as comparative
algorithms in this study. They are MO Ring PSO SCD [21],
DNEA [13], TriMOEA-TA&R [3], DN-NSGA-II [12], and
Omni-optimizer [11], which have been reviewed in Subsec-
tion II-B.

The following parameter settings are adopted by all algo-
rithms. Simulated binary crossover and polynomial mutation
are used (except in MO Ring PSO SCD) as the crossover and
mutation operators, respectively, where the distribution index
in both operators is set to 20. The crossover and mutation
probabilities are 1.0 and 1/n, respectively, where n is the
number of decision variables. The termination criterion is the
predefined maximum number NE of evaluated solutions. For
the two-, three-, and four-objective problems, NE is set to
18, 000, 36, 000, and 72, 000, respectively, and the population
size N is set to 60, 120, and 240, respectively.
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In CPDEA, η and K are set to 2 and 3, respectively. In
MO Ring PSO SCD, both C1 and C2 are set to 2.05 and W
is set to 0.7298 according to the original study [21]. In DN-
NSGA-II, the crowding factor is set to a half of the population
size as the authors’ recommendation [12].

In TriMOEA-TA&R, pcon, σniche, and εpeak are set to 0,
0.5, and 0.01, respectively. The reference vectors are generated
by the systematic approach [39]. The numbers of reference
vectors are 30, 36, and 56, for the two-, three- and four-
objective problems, respectively. Note that for the three- and
four-objective problems, these reference vectors are inverted
due to the PF shape. That is, for each reference vector r, we
use r′ = 1− r instead of r.

In order to compare different algorithms on these test
problems, we adopt IGDX [32] and the Inverted Generational
Distance-Multi-modal (IGDM) [3] as the performance metrics.
IGDX requires a reference solution set in the decsion space,
which is typically uniformly distributed on the true PS. By
measuring the distance between the reference solution set and
an approximate solution set, IGDX gives a comprehensive
quantification of both the convergence and the diversity in the
decision space of the approximate solution set.

Different from IGDX, IGDM requires a set of reference
points which is uniformly distributed on the true PF. The
corresponding equivalent Pareto optimal solutions of every ref-
erence point are used as the reference solutions in the decision
space. Based on these reference points and solutions, IGDM
simultaneously measure the quality of an approximate solution
set in the following three aspects: convergence, diversity in the
objective space, and diversity in the decision space.

The smaller value of IGDX or IGDM, the better perfor-
mance of the approximate solution set. In this study, for both
IGDX and IGDM, 1, 000 reference solutions are sampled in
each equivalent Pareto optimal subset for the two-objective
IDMPs, and over 2, 000 reference solutions are sampled in
each equivalent Pareto optimal subset for the three- and four-
objective IDMPs.

All experimental results in this paper are obtained by
executing 40 independent runs of each algorithm on each test
problem. The Wilcoxon’s rank sum test is employed to deter-
mine whether one algorithm shows a statistically significant
difference from another, and the null hypothesis is rejected at
a significant level of 0.05.

B. Comparison Results

In this subsection, we applied CPDEA, MO Ring PSO
SCD, DNEA, TriMOEA-TA&R, DN-NSGA-II, and Omni-
optimizer to the 12 IDMPs. The average IGDX (IGDM)
value and the corresponding performance score [40] of each
algorithm on each problem are given in Table III (IV). A
darker tone corresponds to a larger performance score (i.e.,
better algorithm). For each test problem, the performance
score of an algorithm is the number of the comparative
algorithms which perform significantly worse than it according
to IGDX (IGDM). We also give the average performance
score of each algorithm over all the test problems. At the
bottom of Tables III (IV), ‘+’ or ‘-’ mean the number of test

TABLE III
RESULTS OF IGDX OBTAINED BY DIFFERENT ALGORITHMS IN SOLVING

THE PROPOSED IDMPS

 

IGDX
Omni-

Optimizer

IDMP-M2-T1 9.9051E-4 5 5.8238E-2 3 3.1996E-1 1 3.2025E-1 0 1.7046E-1 2 3.0612E-1 2

IDMP-M2-T2 1.0418E-3 5 2.7943E-3 3 2.5280E-1 1 3.0332E-1 0 1.8643E-1 1 2.0597E-1 1

IDMP-M2-T3 1.5349E-3 5 2.7099E-3 2 8.7953E-2 3 2.5573E-1 1 2.2189E-1 0 2.8988E-1 0

IDMP-M2-T4 1.0060E-3 5 1.0455E-1 3 3.1993E-1 3 3.3693E-1 0 3.3686E-1 1 3.2156E-1 2

IDMP-M3-T1 5.6432E-3 5 6.3942E-2 4 4.0848E-1 0 3.9706E-1 0 3.0790E-1 3 3.8916E-1 0

IDMP-M3-T2 5.6551E-3 5 3.5670E-2 4 3.5963E-1 2 3.9149E-1 0 3.5466E-1 0 3.9526E-1 0

IDMP-M3-T3 6.1679E-3 5 7.9801E-3 4 2.6708E-1 2 3.4212E-1 0 2.7391E-1 2 3.3375E-1 0

IDMP-M3-T4 5.6181E-3 5 2.2894E-2 4 4.0470E-1 2 4.5465E-1 0 4.6141E-1 0 4.2578E-1 0

IDMP-M4-T1 4.3122E-3 5 3.0056E-1 4 5.9326E-1 2 5.9636E-1 1 4.9900E-1 2 5.9677E-1 0

IDMP-M4-T2 4.3525E-3 5 6.2201E-2 4 5.2027E-1 0 5.4043E-1 0 5.5508E-1 0 5.5601E-1 0

IDMP-M4-T3 4.7786E-3 5 7.5101E-3 4 4.8355E-1 0 4.9111E-1 0 3.4181E-1 2 4.3368E-1 0

IDMP-M4-T4 4.3816E-3 5 8.0168E-3 4 5.1018E-1 0 5.3027E-1 0 5.2769E-1 0 5.2579E-1 0
Average 

Performance 

Score

+ / - / =

0.417

0 / 0 / 12 12 / 0 / 0 12 / 0 / 0 12 / 0 / 0 12 / 0 / 0 12 / 0 / 0

5.000 3.583 1.333 0.167 1.083

TriMOEA-

TA&R
DN-NSGA-IICPDEA

MO_Ring_

PSO_SCD
DNEA

TABLE IV
RESULTS OF IGDM OBTAINED BY DIFFERENT ALGORITHMS IN SOLVING

THE PROPOSED IDMPS

 

IGDM
Omni-

Optimizer

IDMP-M2-T1 1.4124E-2 5 1.8282E-1 3 4.7859E-1 1 5.0449E-1 0 2.8130E-1 1 4.7400E-1 2

IDMP-M2-T2 1.4143E-2 5 3.7313E-2 3 3.8052E-1 1 4.6902E-1 0 2.9222E-1 1 3.4694E-1 1

IDMP-M2-T3 1.8307E-2 5 3.2934E-2 2 1.6449E-1 3 5.0474E-1 0 3.3441E-1 1 4.5614E-1 1

IDMP-M2-T4 1.4381E-2 5 2.0126E-1 3 4.7857E-1 3 5.0462E-1 1 5.0501E-1 0 4.8988E-1 2

IDMP-M3-T1 8.0628E-2 5 2.4865E-1 4 6.4322E-1 2 6.7732E-1 0 5.8313E-1 0 6.5474E-1 0

IDMP-M3-T2 8.0222E-2 5 1.9580E-1 4 5.9635E-1 3 6.3067E-1 1 6.1654E-1 0 6.6028E-1 0

IDMP-M3-T3 8.4936E-2 5 1.1097E-1 4 4.7477E-1 2 5.6472E-1 1 5.1626E-1 1 6.0902E-1 0

IDMP-M3-T4 7.9835E-2 5 1.7693E-1 4 6.4289E-1 3 7.1381E-1 1 7.4751E-1 0 7.0096E-1 2

IDMP-M4-T1 6.2817E-2 5 5.5617E-1 4 7.5730E-1 2 7.6509E-1 0 7.1160E-1 0 7.6067E-1 1

IDMP-M4-T2 6.2369E-2 5 2.5369E-1 4 7.0056E-1 3 7.6503E-1 1 7.7012E-1 0 7.6085E-1 2

IDMP-M4-T3 6.4847E-2 5 1.0586E-1 4 6.9866E-1 1 7.1990E-1 0 6.1194E-1 0 6.9467E-1 0

IDMP-M4-T4 6.2214E-2 5 1.1847E-1 4 7.2776E-1 2 7.4123E-1 1 7.5415E-1 0 7.3205E-1 1
Average 

Performance 

Score

+ / - / =

TriMOEA-

TA&R
DN-NSGA-IICPDEA

MO_Ring_

PSO_SCD
DNEA

1.000

0 / 0 / 12 12 / 0 / 0 12 / 0 / 0 12 / 0 / 0 12 / 0 / 0 12 / 0 / 0

5.000 3.583 2.167 0.500 0.333

problems where CPDEA shows significantly better or worse
performance than the algorithm. ‘=’ means that the number of
test problems where there exists no significance between the
results of CPDEA and the algorithm. Note that the i-th type
of IDMP with j objectives is denoted as IDMP-Mj-Ti.

Fig. 9 shows the solutions obtained by these algorithms
on IDMP-M3-T1 and IDMP-M4-T1 in a given single run to
visually investigate their performance. M3 and M4 in the titles
of the sub-figures indicate the results on IDMP-M3-T1 and
IDMP-M4-T1, respectively. This particular run is associated
with the result which is the closest to the mean IGDX value in
Table III. Each polygon (triangle or rectangle) is an equivalent
Pareto optimal subset. The difficulty in finding solutions in the
polygons on the left-bottom, right-bottom, right-top, and left-
top increases gradually.

We can see from Tables III and IV that the proposed CPDEA
achieved the highest average performance scores based on both
IGDX and IGDM. It significantly outperforms every other
algorithm on every test problem. From Fig. 9, we can see
that CPDEA can find a set of well distributed solutions in
every equivalent Pareto optimal subset (polygon), whereas the
other algorithms cannot.

It is interesting to observe from Tables III and IV that
MO Ring PSO SCD generally performs better than the other
algorithms except for CPDEA. The reason for the relatively
good performance of MO Ring PSO SCD is that it inher-
ently evaluates a solution’s local convergence quality. In
MO Ring PSO SCD, both the personal and neighbor best
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Fig. 9. The solutions obtained by different algorithms on IDMP-M3-T1 and IDMP-M4-T1 in a single run. This particular run is associated with the result
which is the closest to the mean IGDX value in Table III. Each polygon (triangle or rectangle) is an equivalent Pareto optimal subset. The difficulty in finding
solutions in the polygons on the left-bottom, right-bottom, right-top, and left-top increases gradually.

values of each particle (solution) are stored in its own archives
(personal best archive and neighbor best archive). The primary
selection criterion in the archives is the Pareto rank. The
personal and neighbor best archives are updated based on
the particle’s and its neighbor’s historical values, respectively,
not the historical values of all particles. That is, the primary
selection criteria is actually the local Pareto rank. However,
this does not imply that MO Ring PSO SCD is capable to
solve MMOP-ICDs. In fact, solutions in MO Ring PSO SCD
stuck in their local regions. Thus MO Ring PSO SCD cannot
promote diversity around the equivalent Pareto optimal solu-
tions which are difficult to find. This is verified from Fig. 9
(b) and (h). We can see that although MO Ring PSO SCD
obtained solutions close to every equivalent Pareto optimal
subset, the solutions are much less around the equivalent
Pareto optimal subsets which are difficult to find.

DNEA achieved the third best average performance scores
based on both IGDX and IGDM from Tables III and IV.
The average performance score based on IGDM is higher
than that based IGDX. This may be due to the normalization

ability of the double-sharing function, which leads to a good
diversity in the objective space. TriMOEA-TA&R, DN-NSGA-
II, and Omni-optimizer generally perform poorly, especially
TriMOEA-TA&R. This is attributed to its very good conver-
gence ability, which makes it quickly converge toward the
equivalent Pareto optimal subset which is the easiest to find.
We can see from Fig. 9 that DNEA, TriMOEA-TA&R, DN-
NSGA-II, and Omni-optimizer can only find solutions in one
or two polygons.

Note that we provide further investigations on the behavior
of CPDEA in the supplementary material. Readers can refer
to them if interested.

VI. CONCLUSION

In this paper, we have proposed a set of imbalance distance
minimization problems, termed IDMPs, and a novel evolution-
ary algorithm using a convergence-penalized density method,
termed CPDEA.

There exist two causes for the imbalance between conver-
gence and diversity in the decision space in IDMPs. We have
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proposed four types of IDMPs according to these two causes.
In each type of IDMPs, the difficulty in finding each equivalent
Pareto optimal subset is controllable, and the numbers of
objectives, decision variables, and equivalent Pareto optimal
subsets are scalable. We have formulated 12 IDMPs with
different numbers of objectives and decision variables for
benchmarking.

In CPDEA, we have proposed a convergence-penalized den-
sity method for the environmental selection in the population.
The distance between each pair of solutions is transformed
based on their local convergence quality. The density value of a
solution is penalized due to the transformed distances. Besides
the population, an archive is used to store non-dominated
solutions during the evolution. We have proposed a double k-
nearest neighbor method to select solutions with good diversity
in both the objective and decision spaces in the archive. In
addition, we have proposed two reproduction operators for
exploration and exploitation, respectively.

We have compared CPDEA with MO Ring PSO SCD,
DNEA, TriMOEA-TA&R, DN-NSGA-II, and Omni-optimizer
by applying them to the proposed IDMPs. The experimental
results showed that CPDEA is obviously the best among
these algorithms. We have also investigated the effects of the
two parameters, η and p on the behavior of CPDEA in the
supplementary material. The robust performance of CPDEA
was observed in a wide range of η. p is suggest to be set to a
large value at the early stage of evolution but smaller later.

One future research direction is to develop other types of
imbalanced MMOPs. Another research is to design a strategy
to adaptively tune p in CPDEA.

* The codes of IDMP and CPDEA (implemented on PlatEMO [41]) are
available on https://github.com/yiping0liu.
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