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Abstract. 1by1EA is a competitive method among existing many-objective
evolutionary algorithms. However, we find that it may fail to find bound-
ary solutions depending on the Pareto front shape. In this study, we
present an improved version of 1by1EA, named 1by1EA-II, to enhance
the flexibility in handling various shapes of Pareto fronts. In 1by1EA-II,
the Chebyshev distances from a solution to the nadir and ideal points are
alternately employed as two convergence indicators. Using the first con-
vergence indicator, boundary solutions are preferred for a wide spread in
the objective space. With the other convergence indicator, non-boundary
solutions are preferred to promote diversity. We empirically compare the
proposed 1by1EA-II with its original version as well as four other state-
of-the-art algorithms on DTLZ and Minus-DTLZ test problems. The
results show that 1by1EA-II is the most flexible algorithm.

Keywords: many-objective evolutionary computation, Pareto front shape,
convergence, diversity

1 Introduction

There exist a large number of multi-objective optimization problems (MOPs)
in real-world applications. The conflict of objectives implies that there is no
single optimal solution to an MOP, rather a set of trade-off solutions, called
the Pareto optimal solution set (PS). The image of PS in the objective space is
referred to as the Pareto front (PF). Without loss of generality, an MOP can be
mathematically expressed as follows:

minf(x) = min(f1 (x), f2(x), ..., fM (x))
s.t. x ∈ S ⊂ Rn (1)

where x = (x1, ..., xn) represents an n-dimensional decision vector in space S,
fm(x),m = 1, ...,M , is the m-th objective to be minimized, and M is the number



2 Y Liu, H Ishibuchi, Y Nojima, N Masuyama, and K Shang

of objectives. When M > 3, the problem in Eq. (1) is referred to as a many-
objective optimization problem (MaOP).

Multi-Objective Evolutionary Algorithms (MOEAs) are widely applied to
solve MOPs, where the Pareto dominance-based ones are most popular, such as
Non-dominated Sorting Genetic Algorithm II (NSGA-II) [4] and Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [17]. However, their performance generally
deteriorates appreciably for MaOPs. One main reason is the low efficiency of
the Pareto dominance-based selection strategy in the high-dimensional objective
space.

To address this issue, various MOEAs aiming at solving MaOPs have been
developed in recent years. Generally, they can be categorized into the following
three categories: (1) improved Pareto dominance-based methods, e.g., SPEA2
with shift-based density estimation (SDE) [8] and NSGA-III [3]; (2) decomposition-
based methods, e.g., MOEA/D [15] and Reference-Vector-guided Evolutionary
Algorithm (RVEA) [2]; (3) indicator-based methods, e.g., Hypervolume Esti-
mation algorithm (HypE). Besides, there are a number of novel methods that
have not been categorized, e.g., Grid-based Evolutionary Algorithm (GrEA) [14],
Knee point driven Evolutionary Algorithm (KnEA) [16], Bi-Goal Evolutionary
approach (BiGE) [9], Reference Points-based Evolutionary Algorithm (RPEA)
[11], and One-by-One selection-based Evolutionary Algorithm (1by1EA) [10].

These MOEAs often show encouraging performance on widely used bench-
marks such as DTLZ [5] and WFG [6]. However, their performance may strongly
depend on the PF shapes. For example, by simply inverting the PF shapes
of DTLZ, the performance of a decomposition-based method noticeably de-
grades [7]. Similarly, NSGA-III and MOMBI-II which share the concept of de-
composition would also have the issue. For another instance, the performance
of some methods like GrEA is very sensitive to the parameter settings, and it
is difficult to tune the parameters according to the PF shapes. The real-world
optimization problems usually have various shapes of PFs. Therefore, develop-
ing more flexible MOEAs is a must, where improving the flexibility of existing
state-of-the-art MOEAs is very promising.

In this study, we improve 1by1EA’s ability in solving MaOPs with various
shapes of PFs. 1by1EA is very competitive among existing many-objective opti-
mizers. As shown by our computational experiments later in this paper, 1by1EA
has high search ability on DTLZ (which is higher than other many-objective
optimizers such as NSGA-III, MOEA/D, BiGE and KnEA). 1by1EA adopts
not only a one-by-one selection strategy to well balance the convergence and
the diversity of solutions, but also a corner solution preserving strategy for a
wide spread. However, we find that 1by1EA may not perform well when the
corner solutions are difficult to be located on a PF. In this study, we present
an improved version of 1by1EA, named 1by1EA-II. It alternately employs two
convergence indicators to search the boundary and non-boundary solutions and
is more flexible than its original version.

The remainder of this paper is organized as follows. In Section 2, 1by1EA
is first briefly introduced and the motivation of this work is elaborated. The
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proposed 1by1EA-II is then described in detail in Section 3. Section 4 presents
experimental results and discussions. Section 5 concludes the paper and provides
future research directions.

2 Preliminaries

In this section, we first briefly introduce 1by1EA [10] and then elaborate the
motivation of this work.

2.1 A Brief Introduction to 1by1EA

The general framework of 1by1EA is similar to standard generational evolution-
ary algorithms, whereas its environmental selection makes it special.

Assume to solve the problem in Eq.(1) using 1by1EA. Before the environ-
mental selection, the convergence and distribution indicators of each candidate
solution are calculated. Please refer to the original study for the examples of
these indicators [10]. The convergence indicator is usually a scalarizing function
aggregating all objective functions, such as the sum of all objective functions or
the Euclidean distance between the solution and the ideal (nadir) point. Note
that we estimate the ideal (nadir) point in terms of the minimum (maximum)
objective values among obtained non-dominated solutions in this study. The con-
vergence indicator can provide an extremely large selection pressure towards the
PF. The general formulation of the convergence indicator can be summarized as
follows:

c(x) = agg(f1(x), ..., fM (x)). (2)

The distribution indicator is the cosine similarity between the solution and each
of the others. It can efficiently reduce the number of dominance resistant solu-
tions.

Next, M corner solutions are selected to estimate the boundary of the PF.
The mth corner solution xcorner

m is obtained by the following method:

xcorner
m = arg min

xi∈Q
cm(xi),m = 1, ...,M, (3)

where cm(xi) = agg(f1(x), ..., fm−1(x), fm+1(x), ..., fM (x)), and Q is the cur-
rent population.

Finally, the one-by-one selection strategy is applied. It consists of the two
important steps. In the first step, only one solution with the best value of the
convergence indicator is selected, focusing on the convergence. In the second step,
solutions close to the one selected in the first step are de-emphasized according
to the distribution indicator, thus maintaining the diversity of the population.
By repeating the above two steps, a solution set with good convergence and
diversity can be obtained.

1by1EA has been demonstrated to be a competitive many-objective opti-
mizer. However, we find that 1by1EA is not flexible enough due to the corner
solution preserving strategy. The motivation of improving 1by1EA is elaborated
in the next subsection.
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2.2 Motivation

As reported in [7] recently, a number of newly proposed decomposition-based
algorithms seem to be overspecialized for the popular benchmarks like DTLZ.
In [7], the minus version of DTLZ (denoted as Minus-DTLZ) is presented, where
the PF shapes are inverted from those of DTLZ. Fig. 1 shows the true PFs of
DTLZ2 and Minus-DTLZ2 with three objectives for intuitive understanding.
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Fig. 1. The true PFs of DTLZ2 and Minus-DTLZ2 with three objectives.

The performance of decomposition-based algorithms appreciably deteriorates
on Minus-DTLZ merely because the PF shapes of Minus-DTLZ are different from
those of DTLZ. Some recent researches on using two reference vector sets have
addressed this issue [1,13]. This inspires us to investigate the behaviors of some
non-decomposition-based algorithms like 1by1EA when handling various shapes
of PFs.

The corner solution preserving strategy plays an important role in 1by1EA.
Fig. 2 presents the solution sets obtained by 1by1EA with and without preserv-
ing corner solutions on DTLZ2 and Minus-DTLZ2 with three objectives in a
typical run, where the Euclidean distance between a solution and the ideal point
is chosen as the convergence indicator. Note that in this study, the inverted gen-
erational distance (IGD) [18] of the solution set obtained in the typical run is
the nearest to the average IGD over 40 runs.

We can see from Fig. 2 that preserving corner solutions can lead to the solu-
tion sets widely spread in the objective space both on DTLZ2 and Minus-DTLZ2.
The solution set in Fig. 2(b) approximates well to the true PF in Fig. 1(a). How-
ever, the solution set in Fig. 2(d) fails to cover some boundary regions, comparing
to the true PF in Fig. 1(b). The reason is that the corner solutions to DTLZ2
(i.e., (1, 0, 0), (0, 1, 0), (0, 0, 1)) can be easily located by Eq.(3) (i.e., minimizing
f2 + f3, f3 + f1, and f1 + f2, respectively), whereas those to Minus-DTLZ2
(i.e., (−3.5, 0, 0), (0,−3.5, 0), (0, 0,−3.5)) cannot. Of course, we can use another
method (i.e., by minimizing f1, f2, and f3, respectively) to obtain the corner
solutions of Minus-DTLZ2. However, for real-world optimization problems, we
usually cannot obtain the a priori knowledge of corner points and apply a proper
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Fig. 2. The solution sets obtained on DTLZ2 and Minus-DTLZ2 with three objectives.

method to locate all of them. Furthermore, even if we use both of the above-
mentioned methods, the shape of a PF could be too complex to locate the corner
solutions.

From these observations, we notice that if the corner solution can be precisely
located, 1by1EA performs perfectly; otherwise, it may miss some boundary re-
gions on a PF. This indicates that the performance of 1by1EA also depends on
the shapes of PFs.

In view of this, we present an improved version of 1by1EA, named 1by1EA-
II, to enhance its flexibility in handling various shapes of PFs. In 1by1EA-II, the
corner solutions are no longer needed to be preserved. The diversity of solutions
are promoted by alternately employing two different convergence indicators. The
details of 1by1EA-II are described in the next section.

3 1by1EA-II

The difference between 1by1EA and 1by1EA-II is that in the environmental
selection of 1by1EA-II, the corner solutions are no longer preserved by Eq.(3),
and two convergence indicators are alternately employed to select the solution
with best convergence performance. That is, after selecting a solution according
to a convergence indicator, the next solution to be selected is based on the
other convergence indicator. Please refer to the original study of 1by1EA for
the environmental selection procedure [10]. We describe the two convergence
indicators used in 1by1EA-II in the following parts.

The first convergence indicator adopted in 1by1EA-II is the Chebyshev dis-
tance between a solution and the nadir point. It is formulated as follows:

cCdN(x) = max
1≤m≤M

|fm(x)− znadm |, (4)

where znad = (znad1 , ..., znadM ) is the nadir point. Note that there is no weight in
the convergence indicators, since all the objectives are equally considered in this
study. The solution farthest from the nadir point is supposed to have the best
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convergence performance. However, since the nadir point is estimated based on
the obtained non-dominated solutions, a solution dominated by the estimated
nadir point may be better than others according to Eq.(4). This situation should
be avoided. In addition, we want to minimize the convergence indicator. There-
fore, we modify Eq.(4) into the following formulation:

c1(x) = min
1≤m≤M

(fm(x)− znadm ). (5)

By minimizing c1 in 1by1EA-II, the boundary solutions (including the cor-
ner solutions) are preferred (no matter the Pareto front is convex or concave).
Fig. 3(a) presents an illustration of the solution selection procedure only using
c1.
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Fig. 3. Solution selection procedure in 1by1EA-II.

In Fig. 3, assume (0,0,0) and (1,1,1) are the ideal and nadir points, respetively.
Dots A-J are candidate solutions, and we want to select five of them into the
next generation. The dashed triangles are the intersections of the contour lines
of c1 and the hyperplan defined by f1 + f2 + f3 = 1 (note that the solutions
are not necessarily on the hyperplan). Solutions connected with each other are
in the other’s niche according to the diversity indicator. As can be seen from
Fig. 3(a), the boundary solution A has the minimum value of c1 and all the
other solutions are within the corresponding dashed triangle of A. Therefore, A
is selected first. Then B is de-emphasized since it is too close to A. Next, C, D,
E, and F are selected one by one due to their minimum c1 values among the
rest. From this illustration, we can observe that boundary solutions are always
preferred by minimizing c1 no matter what is the shape of a PF. Consequently,
preserving corner solutions is unnecessary in 1by1EA-II.

However, employing c1 as the only convergence indicator may results in two
issues. The first issue is that it may lead the population into a partial region of
the PF, since the estimated nadir point is usually quite different from the true
one at the early stage of evolution. Minimizing c1 with an incorrect nadir point
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will result in solutions located in partial regions. Conversely, the nadir point
in the next generation could be estimated more incorrectly by these solutions.
Fig. 4(a) shows the obtained solution set on DTLZ2 with three objectives in a
typical run when c1 is employed as the only convergence indicator. We can see
that most solutions locate in a small region. The other issue is that even if we
use the true nadir point, the solutions are more likely to locate in the boundary
region. Fig. 4(b) shows all the solution sets obtained in 40 runs where the true
nadir point is used in c1. We can observe that the solutions in the boundary
region are denser than those in the central region.
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Fig. 4. The solution set obtained on DTLZ2 with three objectives when c1 is employed
as the only convergence indicator.

In view of this, we employ the Chebyshev distance between a solution and
the ideal point as the other convergence indicator, which is formulated as follows:

c2(x) = max
1≤m≤M

|fm(x)− z∗m|, (6)

where z∗ = (z∗1 , ..., z
∗
M ) is the ideal point. In contrast to minimizing c1, non-

boundary solutions are preferred when minimizing c2. Alternately employing c1
and c2 is helpful to promote diversity, since both non-boundary and boundary
solutions have a chance to be selected. Let us see Fig. 3(b) as an example, where
the dashed inverted triangles are the intersections of the contour lines of c2 and
the hyperplan defined by f1+f2+f3 = 1. The solution J has the minimum value
of c2 and all the other solutions are outside the corresponding dashed inverted
triangle of J. In this case, A, J, C, I, and D are selected one by one, and B and F
are de-emphaized after selecting A and I, respectively. There are more solutions
in the central region in Fig. 3(b) than that in Fig. 3(a). In addition, solutions
selected by alternately using c1 and c2 have a much lower chance to converge
into a partial region, and the nadir point could be estimated more precisely.

By the cooperation among the above-mentioned two convergence indicators
and the distribution indicator, the one-by-one selection strategy in 1by1EA-II is
expected to locate the boundary solutions on a PF and maintain a good diversity
within the boundary.
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4 Experiments and Discussions

In this section, we empirically evaluate and discuss the performance of 1by1EA-II
by comparing it with 1by1EA, NSGA-III, MOEA/D, BiGE and KnEA. DTLZ1
to 4 and Minus-DTLZ1 to 4 are chosen as test problems. We consider these test
problems with 3, 4, 6, and 8 objectives. The number of variables n is set to
M + 4 for DTLZ1 and Minus-DTLZ1, and M + 9 for the other test problems
(M is the number of objectives). NSGA-III and MOEA/D are supposed to be
overspecialized for DTLZ test problems according to [7]. No study has shown
that BiGE and KnEA are overspecialized so far.

For all compared algorithms, simulated binary crossover and polynomial mu-
tation are used as the crossover and mutation operators, with both distribution
indexes being set to 20. The crossover and mutation probabilities are 1.0 and
1/n, respectively. The population size N is set to 105, 120, 132 and 156 when M
is 3, 4, 6, and 8, respectively. In 1by1EA, the Euclidean distance between a solu-
tion and the ideal point is chosen as the convergence indicator. In MOEA/D, the
PBI method with θ = 5 is adopted. In KnEA, T is set to 0.5. Each algorithm is
run for 40 times on each test problem, where the termination condition is set to
600 generations for DTLZ3 and Minus-DTLZ3, and 300 generations for the other
test problems. The source codes of 1by1EA and 1by1EA-II can be downloaded
from https://github.com/yiping0liu. All the other compared algorithms are
implemented by PlatEMO [12].

Table 1 lists the average values of IGD over 40 runs in gray scale, where
a darker tone corresponds to a larger average value of IGD. Note that in this
study the reference points for IGD calculation are uniformly sampled on a true
PF, and the number of reference points is around 104. In Table 1, “Rank1”,
“Rank−1”, and “Rankall” denote the average ranks of each algorithm according
to the average IGD values on DTLZ, Minus-DTLZ, and all the test problems,
respectively. DTLZn-m (DTLZn−1-m) denotes DTLZn (Minus-DTLZn) with
m objectives. ”†” indicates that the result is significantly different from that of
1by1EA-II by Wilcoxons rank sum test where the null hypothesis is rejected at a
significant level of 0.05. “+”, “-”, and “=” indicate the number of test problems
where 1by1EA-II shows significantly better, worse, and similar performance,
respectively.

From Table 1, we can see that 1by1EA-II, 1by1EA, NSGA-III, and MOEA/D
generally achieve satisfactory results on DTLZ, where 1by1EA obtains the best
“Rank1”. The ‘Rank1” of 1by1EA-II is very close to those of NSGA-III and
MOEA/D, which are verified to have strength in solving DTLZ. This indicates
that 1by1EA-II is very effective on solving these problems. However, 1by1EA-
II does not perform as well as 1by1EA, NSGA-III, and MOEA/D on DTLZ1,
DTLZ2 and DTLZ3 with three objectives. MOEA/D performs poorly on DTLZ4,
since DTLZ4 has a bias PF, which results in the failure of the PBI method in
maintaining diversity in the objective space. BiGE and KnEA obtain larger
values of “Rank1” than the others, which suggests that they do not achieve ap-
pealing results, comparing to the algorithms that are supposed to overspecialized
for DTLZ. However, they show relatively good performance on DTLZ4.
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Table 1. Average IGD obtained by different algorithms.

 

IGD 1by1EA-II

DTLZ1-3 5.449E-2 4.834E-2 † 1.940E-2 † 1.943E-2 † 3.507E-2 † 5.564E-2 †

DTLZ1-4 4.599E-2 4.639E-2 4.186E-2 † 4.168E-2 † 8.023E-2 † 1.339E-1 †

DTLZ1-6 8.035E-2 8.406E-2 † 1.070E-1 † 8.048E-2 2.005E-1 † 2.432E-1 †

DTLZ1-8 1.056E-1 1.116E-1 † 1.610E-1 † 8.979E-2 † 3.508E-1 † 9.064E-1 †

DTLZ2-3 7.544E-2 5.143E-2 † 5.032E-2 † 5.031E-2 † 7.764E-2 6.645E-2

DTLZ2-4 1.316E-1 1.184E-1 † 1.212E-1 † 1.212E-1 † 1.640E-1 † 1.420E-1 †

DTLZ2-6 2.623E-1 2.499E-1 † 2.577E-1 † 2.558E-1 † 3.140E-1 † 2.809E-1 †

DTLZ2-8 3.692E-1 3.492E-1 † 3.619E-1 3.156E-1 † 4.006E-1 † 3.837E-1 †

DTLZ3-3 8.314E-2 5.053E-2 † 5.151E-2 † 5.163E-2 † 9.779E-2 † 1.135E-1 †

DTLZ3-4 1.345E-1 1.246E-1 1.232E-1 1.560E-1 † 2.709E-1 † 2.792E-1 †

DTLZ3-6 2.702E-1 2.591E-1 † 5.501E-1 † 4.295E-1 † 1.734E+0 † 1.651E+0 †

DTLZ3-8 3.839E-1 3.604E-1 † 1.267E+0 † 5.105E-1 † 1.465E+1 † 6.748E+1 †

DTLZ4-3 9.048E-2 6.865E-2 † 9.944E-2 † 3.826E-1 † 1.084E-1 † 9.513E-2 †

DTLZ4-4 1.656E-1 1.205E-1 † 1.764E-1 † 4.217E-1 † 1.659E-1 1.705E-1 †

DTLZ4-6 2.717E-1 2.835E-1 2.854E-1 † 5.511E-1 † 3.112E-1 † 3.105E-1 †

DTLZ4-8 3.763E-1 3.522E-1 † 3.452E-1 † 6.229E-1 † 3.980E-1 † 3.753E-1

Rank1 3.0

+/-/= \

DTLZ1-1-3 2.376E+1 4.686E+1 † 3.056E+1 † 3.850E+1 † 2.980E+1 † 4.453E+1 †

DTLZ1-1-4 4.651E+1 7.525E+1 † 7.991E+1 † 6.203E+1 † 5.555E+1 † 6.800E+1 †

DTLZ1-1-6 8.708E+1 1.540E+2 † 1.256E+2 † 1.661E+2 † 9.844E+1 † 9.990E+1 †

DTLZ1-1-8 1.666E+2 2.526E+2 † 1.544E+2 † 2.645E+2 † 1.244E+2 † 1.199E+2 †

DTLZ2-1-3 2.345E-1 3.358E-1 † 2.390E-1 2.432E-1 † 3.262E-1 † 2.368E-1

DTLZ2-1-4 4.589E-1 7.004E-1 † 5.178E-1 † 5.622E-1 † 6.616E-1 † 5.704E-1 †

DTLZ2-1-6 9.169E-1 1.365E+0 † 1.121E+0 † 1.241E+0 † 1.332E+0 † 1.225E+0 †

DTLZ2-1-8 1.367E+0 1.886E+0 † 1.684E+0 † 2.125E+0 † 1.879E+0 † 1.570E+0

DTLZ3-1-3 1.466E+2 2.615E+2 † 1.517E+2 1.532E+2 † 1.993E+2 † 1.648E+2 †

DTLZ3-1-4 2.884E+2 4.496E+2 † 3.333E+2 † 3.534E+2 † 4.167E+2 † 3.976E+2 †

DTLZ3-1-6 5.717E+2 8.651E+2 † 7.039E+2 † 7.769E+2 † 8.412E+2 † 7.371E+2 †

DTLZ3-1-8 7.744E+2 1.173E+3 † 1.044E+3 † 1.333E+3 † 1.185E+3 † 9.401E+2 †

DTLZ4-1-3 2.214E-1 5.638E-1 † 2.348E-1 † 8.504E-1 † 2.676E-1 † 2.351E-1 †

DTLZ4-1-4 5.669E-1 5.781E-1 5.160E-1 † 9.226E-1 † 5.544E-1 5.477E-1 †

DTLZ4-1-6 1.109E+0 1.146E+0 1.049E+0 1.848E+0 † 1.129E+0 1.013E+0 †

DTLZ4-1-8 1.454E+0 1.559E+0 † 1.403E+0 † 2.423E+0 † 1.581E+0 † 1.328E+0 †

Rank-1 1.8

+/-/= \

Rankall 2.4

+/-/= \ 16/11/5 17/10/5 23/8/1 26/2/4 24/4/4

14/0/2 10/3/3 16/0/0 13/1/2 10/4/2

2.0 2.9 3.1 5.1 5.0

5.3 2.6 4.8 3.9 2.7

3.7 2.8 3.9 4.5 3.8

1by1EA NSGA-III MOEA/D BiGE KnEA

7/7/2 7/8/1 13/1/2 14/0/22/11/3
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For Minus-DTLZ, 1by1EA-II outperforms the others on most test problems
and obtains the best “Rank−1”. On the contrary, 1by1EA achieves poor IGD
values on these problems and obtains the worst “Rank−1”. Comparing the re-
sults obtained by 1by1EA on DTLZ and Minus-DTLZ, we can notice that the
performance of 1by1EA strongly depends on the PF shapes. The distribution of
reference vectors (points) used in both MOEA/D and NSGA-III is inconsistent
with the PF shapes of Minus-DTLZ. The performance of MOEA/D generally de-
grades appreciably on Minus-DTLZ, whereas the results of NSGA-III on Minus-
DTLZ are still acceptable. The reason is that every reference vector (point) has
to be assigned a solution in MOEA/D while it does not in NSGA-III. Moreover,
in NSGA-III, multiple solutions can be clustered to one reference point, and
then the reference points within the region of PF are assigned more solutions
than those outside the region of PF. Consequently, the diversity of the solution
set can be well maintained in NSGA-III. This observation indicates that the
performance of NSGA-III is less sensitive to the PF shape than MOEA/D. The
average ranks obtained by BiGE and KnEA on Minus-DTLZ are better than
those on DTLZ. They achieve encouraging results on some Minus-DTLZ test
problems. Theoretically, both of them are not designed to solve particular prob-
lems, however, they seem to perform better on Minus-DTLZ when comparing to
the other algorithms.

As a whole, 1by1EA-II achieves the best overall performance among the
compared algorithms, since it obtains the best value of “Rankall”. Besides,
both“Rank1’ and “Rank−1” obtained by 1by1EA-II are satisfying. Therefore,
we can conclude that 1by1EA-II is most flexible among the compared algorithm
on DTLZ and Minus-DTLZ test problems.

To visually demonstrate the superiority of 1by1EA-II over the other algo-
rithms, we show the solution sets obtained by the compared algorithms in a
typical run in Fig. 5. Due to space limits, only results on Minus-DTLZ2 with
three objectives are presented. As can be seen from Fig. 5, 1by1EA-II can locate
the boundary solutions according to the PF shape and maintain good diversity
within the boundary. 1by1EA behaves as we have explained in Subsection 2.2.
For NSGA-III, there are many solutions very close to another one, since multiple
solutions are clustered to one reference point. In MOEA/D, the reference vectors
outside the true PF are assigned to solutions that are close to those inside the
true PF, and thus the solutions obtained by MOEA/D are denser in the certain
regions. The solutions obtained by BiGE fail to trace the true PF shape, and
some overlap with each other. KnEA can find the boundary solutions, however,
most solutions concentrate on the corner regions.

5 Conclusions

In this paper, we presented an improved version of 1by1EA, named 1by1EA-
II. 1by1EA-II has two distinct features. The first is that it does not preserve
corner solution in the environmental selection. The other is that it alternately
employs two different convergence indicators, which are the Chebyshev distances
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Fig. 5. The solution sets obtained by different algorithms on Minus-DTLZ2 with three
objectives in a typical run.

from a solution to the nadir and ideal points, respectively. By using these two
convergence indicators, 1by1EA-II has an ability in achieving a well-distributed
solution set according to the PF shape.

To demonstrate the effectiveness of 1by1EA-II, we tested it on DTLZ and
Minus-DTLZ test problems in comparison with five state-of-the-art algorithms,
namely, 1by1EA, NSGA-III, MOEA/D, BiGE, and KnEA. The experimental
results demonstrated that 1by1EA-II is a competitive and flexible method among
the chosen algorithms.

To further investigate and improve the flexibility of 1by1EA-II, we will apply
it to optimization problems with other shapes of PFs in the future work. In
addition, based on the boundary locating technique in 1by1EA-II, developing
a reference vector generation method for decomposition-based algorithms is of
great interest.
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