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Abstract—Most existing multi-objective evolutionary algo-
rithms experience difficulties in solving many-objective optimiza-
tion problems due to their incapability to balance convergence
and diversity in the high-dimensional objective space. In this
paper, we propose a novel many-objective evolutionary algorithm
using a one-by-one selection strategy. The main idea is that in the
environmental selection, offspring individuals are selected one by
one based on a computationally efficient convergence indicator
to increase the selection pressure towards the Pareto optimal
front. In the one-by-one selection, once an individual is selected,
its neighbors are de-emphasized using a niche technique to
guarantee the diversity of the population, in which the similarity
between individuals is evaluated by means of a distribution
indicator. In addition, different methods for calculating the con-
vergence indicator are examined and an angle-based similarity
measure is adopted for effective evaluations of the distribution
of solutions in the high-dimensional objective space. Moreover,
corner solutions are utilized to enhance the spread of the solutions
and to deal with scaled optimization problems. The proposed
algorithm is empirically compared with eight state-of-the-art
many-objective evolutionary algorithms on 80 instances of 16
benchmark problems. The comparative results demonstrate that
the overall performance of the proposed algorithm is superior to
the compared algorithms on the optimization problems studied
in this work.

Index Terms—Many-objective optimization, evolutionary
multi-objective optimization, performance indicator, cosine sim-
ilarity, convergence, diversity.

I. INTRODUCTION

MULTI-objective optimization problems (MOPs) are
characterized with multiple conflicting objectives. They

are commonly seen in real world applications. For example,
in industrial scheduling [1], [2], a decision maker would be
interested in simultaneously minimizing the makespan and the
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earliness time. In environmental/economic dispatch [3], the
total fuel cost and the emission of pollutants are expected
to be simultaneously reduced to operate the electric power
systems by meeting the load demand. In controller design
[4], the control design and stability analysis problems are
successfully solved for uncertain switched nonlinear systems
[5], [6], where the control effect and energy conflict with
each other. Generally, there is no single optimal solution to
these problems, rather a set of trade-off solutions, known as
the Pareto optimal set. In the literature, MOPs with more
than three objectives are often referred to as many-objective
optimization problems (MaOPs) [7]–[10].

Over the past two decades, a large number of multi-objective
evolutionary algorithms (MOEAs) have been proposed. Gen-
erally speaking, the selection strategy plays a key role in most
MOEAs, which needs to take both the convergence of the
solutions to the Pareto optimal front and the distribution of
the solutions into account.

Pareto-dominance-based MOEAs, e.g., nondominated sort-
ing genetic algorithm II (NSGA-II) [11] and strength Pareto
evolutionary algorithm 2 (SPEA2) [12], are the most popular
among various methods. These algorithms employ the Pareto
dominance as the primary selection criterion, where non-
dominated solutions are always preferred for good conver-
gence. To promote a good distribution of the solutions, a
diversity related secondary selection criterion is adopted as
well. Dominance-based MOEAs have been proved successful
in solving a large number of MOPs. However, their perfor-
mance will seriously deteriorate in solving MaOPs. One main
reason is that the proportion of non-dominated solutions in
the population considerably rises as the number of objectives
increases, leaving the dominance-based selection criterion
unable to distinguish solutions. As a result, the diversity
based criterion will play a crucial role in selection, leading
to solutions far away from the Pareto optimal front being
maintained [13].

An effective approach to improving the ability of
dominance-based MOEAs to solve MaOPs is to redefine the
dominance relationship. A large body of research along this
line has been reported, e.g., dominance area control [14], L-
optimality [15], fuzzy Pareto dominance [16], etc. Although
these modified dominance relationships have been shown to
be able to improve the convergence of MOEAs for solving
MaOPs, they may also cause the population to converge to a
sub-region of the Pareto optimal front.

An alternative way to enhance the ability of dominance-
based MOEAs for MaOPs is either to improve the diversity-
based secondary selection criterion, or to replace it with
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other selection criteria. For instance, a diversity management
operator is employed to adjust the requirement on diversity
in mating and environmental selection [17]. By shifting the
position of a solution in sparse regions, a shift-based density
estimation (SDE) was proposed to discard solutions that lead
to poor convergence [18]. An extension of NSGA-II for
solving MaOPs, termed NSGA-III was developed in [19],
which uses a reference-point-based secondary criterion for
maintaining diversity. In [20], following the idea of preferring
the knee points among non-dominated solutions, a knee point
driven evolutionary algorithm (KnEA) was proposed for many-
objective optimization.

Unlike dominance-based MOEAs, decomposition-based
MOEAs have been found to be very promising for many-
objective optimization. One typical example of this class of
algorithms are MOEA/D [21] and its variants [22]–[25]. In
MOEA/D, the diversity of a population is maintained by a
set of predefined well distributed reference vectors. Based on
these reference vectors, the objectives of an MOP are aggre-
gated into a number of scalarizing functions, each of which
generating a single scalar value. Individuals in a population
are guided to search towards the Pareto optimal front in the
directions specified by the reference vectors by minimizing
these scalarizing functions. MOEA/D has been demonstrated
efficient in solving both MOPs and MaOPs. However, one
known problem of MOEA/D is that uniformly distributed
reference vectors do not necessarily lead to uniformly dis-
tributed solutions, particularly for problems with irregular (i.e.,
nonuniform) Pareto optimal fronts.

Grid-based algorithms, e.g., ε-MOEA [26] and GrEA [27],
are also very competitive MOEAs for solving MaOPs. Grids
are very effective for measuring the distribution of solutions
according to their positions. In these algorithms, the objective
space is first divided into a grid of hypercubes. Then, some
convergence-related selection criteria, e.g., the dominance
relationship of the hypercubes and the distance between a
solution and the origin of its hypercube, are utilized so that
each non-dominated hypercube contains no more than one
solution. However, the adaptation of the grid size for different
optimization problems is non-trivial.

Different from the above methods, indicator-based evolu-
tionary algorithms (IBEAs) [28] adopt a single indicator which
accounts for both convergence and distribution performances
of a solution set. Therefore, solutions can be selected one
by one based on their influence on the performance indica-
tor. Among others, hypervolume is a widely used indicator
in IBEAs. Unfortunately, the computational complexity for
calculating hypervolume increases exponentially as the num-
ber of objectives increases, which makes it computationally
prohibitive for MaOPs. To address this issue, HypE [29] uses
Monte Carlo simulations to estimate the hypervolume, where
the accuracy of the estimated hypervolume can be trade off
against the available computational resources. Recently, R2
[30] and the additive approximation [31] were also proposed
to further enhance the computational efficiency of IBEAs for
solving MaOPs.

The effectiveness of IBEAs for solving MaOPs lies in the
fact that performance indicators such as hypervolume can

account for both convergence and distribution of the solution
set. Intuitively, it is also likely to consider convergence and
distribution of a solution set separately, e.g., by simultaneously
measuring the distance of the solutions to the Pareto optimal
front, and maintaining a sufficient distance between each other.
Motivated by this idea, we propose here a many-objective
evolutionary algorithm using a one-by-one selection strategy,
1by1EA for short. In 1by1EA, solutions are selected according
to a convergence indicator and a distribution indicator. The
former measures the distance between a solution and the
Pareto optimal front, while the latter measures its distance
to each other. In each step of the selection procedure, only
one solution with the best value of the convergence indicator
is selected. Then, based on the distribution indicator, the
solutions close to the selected one are de-emphasized using
a niche technique. Thus, superior solutions are selected one
by one and the needed calculation in each generation is
little. On the contrary, calculating the indicator in IBEAs is
computationally expensive, not only because the calculation
involves both convergence and distribution, but also because
it has to be recalculated once a new solution is selected.

The main contributions of this work can be summarized as
follows:

(1) A general evolutionary framework, termed 1by1EA
is presented, where solutions in the current population are
selected one by one based on a convergence indicator.
The neighboring solutions of the selected solution are de-
emphasized using a niche technique, in which their similarities
are evaluated by a distribution indicator. One benefit of this
selection strategy is that it is able to easily balance the need
for convergence towards the Pareto optimal front and the
requirement on diversity of the population.

(2) A distribution indicator based on the cosine similarity
is proposed for effectively evaluating the distance between
solutions in the high-dimensional objective space. Compared
with the distribution indicator based on the Euclidean dis-
tance, cosine similarity can effectively reduce the number for
solutions that prevent the population from converging to the
Pareto optimal front, thereby enhancing the algorithm’s ability
to solve MaOPs.

(3) A boundary maintenance mechanism is suggested by
taking advantage of the corner solutions to achieve a good
spread of the solutions over the Pareto optimal front. We
demonstrate that this mechanism can reduce the possibility
of losing boundary solutions.

The remainder of this paper is organized as follows. In Sec-
tion II, important definitions in multi-objective optimization
are given and the motivation of this work is elaborated. The
proposed 1by1EA is then described in detail in Section III.
Section IV presents the experimental design, test functions,
and performance indicators for comparing the performance of
1by1EA with the state-of-the-art. The experimental results and
discussions are given in Section V. Section VI concludes the
paper.
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II. PRELIMINARIES

A. Basic Definitions

Without loss of generality, the MOP considered in this study
is formulated as follows:

min f (x) = (f1 (x) , f2 (x) , ..., fM (x))
s.t.x ∈ S ⊂ Rn (1)

where x represents an n-dimensional decision vector in space
S. fm(x),m = 1, 2, ...M is the m-th objective to be mini-
mized, and M is the number of objectives. When M > 3, this
problem is known as an MaOP.

In multi-objective optimization, the following concepts have
been well defined and widely applied.

Pareto Dominance: For any two different solutions of for-
mula (1), x1, x2 ∈ S, if ∀m = 1, 2, ...,M, fm (x1) ≤ fm (x2),
and ∃i = 1, 2, ...,M, fi (x1) < fi (x2), then x1 dominates x2,
denoted as x1 ≺ x2.

Pareto optimal set: For a solution to the problem in (1),
x∗ ∈ S, if there is no x′ ∈ S satisfying x′ ≺ x∗ , then x∗
is the Pareto optimal solution. All such solutions form a set
often called the Pareto optimal solution set (PS).

Pareto optimal front: The image of the Pareto optimal
solution set in the objective space is known as the Pareto
optimal front (PF ).

B. Motivation

One major reason for MOEAs to have difficulties in solving
MaOPs is that it is no longer possible to distinguish solutions
by means of the Pareto dominance relationship. Many efforts
have been made to modify the dominance relationship to
make it easier to distinguish solutions [14]–[16]. In addition,
it will be much easier to distinguish solutions if we utilize
a scalarizing function to measure their convergence perfor-
mance. As a result, superior solutions can be selected one
by one, and the selection pressure towards the Pareto optimal
front will be significantly increased. Motivated by this idea,
we adopt a convergence indicator that sums up the values
of all objectives of a solution. This convergence indicator is
somewhat similar to the scalarizing function in MOEA/D [21],
or the achievement function in preference-based MOEAs [32].
Unlike these methods, however, no reference/weight vectors
are predefined for the objectives, since all objectives are
considered equally important. In this way, an MaOP is actually
transformed into a single-objective problem whose objective
is the convergence indicator.

Note however that if we adopt the convergence performance
for selecting solutions, only a small part of Pareto optimal front
can be obtained. To address this issue, a distribution measure
is needed. As we know, niche techniques have widely been
used in handling multi-modal single-objective optimization
problems due to their ability in maintaining the diversity of a
population in the decision space [33]. In fact, niche techniques
have also been used to maintain the diversity in multi-objective
optimization [34], which was termed niched Pareto genetic
algorithm (NPGA). In NPGA, a niche is determined by a
threshold, and the niche count is the number of solutions in
a niche. Non-dominated solutions with a smaller niche count

are preferred. Deb et al. [35] proposed a similar method called
ε-clearing, in which non-dominated solutions are randomly
selected, and then their neighbors are de-emphasized. In [36],
an MaOP is transformed into a bi-objective problem, in which
one objective is constructed based on a niche technique.
Optimizing this objective leads to a more diverse population.
Recently, Zhang et al. [20] employed a hyperbox to identify
the neighbors of a selected solution, and the size of the
hyperbox can be adaptively changed during the evolution.
Inspired by the above ideas, in this work, we adopt a dis-
tribution indicator, which is a vector with each of its elements
representing the distance between a solution and the rest ones.
Once a solution is selected, all solutions whose distance to
the selected one is less than a predefined threshold will be
de-emphasized.

Using the above convergence and distribution indicators as
two selection criteria, the evolutionary algorithm will be able
to solve MaOPs in principle. However, the following issues
must be resolved to enhance the performance:

(1) Solutions selected according to the above criteria may
contain dominated solutions. Assume there are nine solutions
in a population, solutions A to I, for a bi-objective optimization
problem, as illustrated in Fig. 1. Suppose that the convergence
indicator is the Euclidean distance of a solution to the origin,
and the distribution indicator is a vector of the Euclidean
distances between this solution to the rest. Clearly, if a solution
dominates another, it is very likely to have a better value in
terms of the convergence indicator. Assume rα is the distance
threshold to de-emphasize the neighboring solutions once a
solution is selected. For the given solutions, A is the first
solution to be selected according to the convergence indicator.
Then, according to the distribution indicator and the value of
rα, B is de-emphasized. Solution C, which is closer to the
origin than solutions D to I, is selected thereafter, although
it is dominated by A. By contrast, solution D or F, which
are non-dominated by solution A, will not be selected. This
means that the selection criterion is not strictly consistent with
the Pareto dominance criterion. Although the probability that
one solution dominates another is considerably low in a high-
dimensional objective space, selection of dominated solutions
instead of the non-dominated ones may degrade the search
performance of the algorithm.

(2) Euclidean distance is not well suited for measuring dis-
tribution in a high-dimensional space. Most existing methods,
however, such as niche [34] and k-nearest [12], employ the
Euclidean distance to estimate the distribution of solutions,
which results in a large number of dominance resistant solu-
tions (DRS) [13] in the population. For example in Fig. 1,
F-I are all selected since for each of them, the Euclidean
distance to each of the others is larger than the threshold.
As a matter of fact, G, H, and I are farther away from the
Pareto optimal front than some solutions which are in a more
crowded region, e.g. B. This issue becomes more serious in
a high-dimensional space, since the Euclidean distance has
been shown to be inadequate to describe the neighborhood
relationship in a high-dimensional space [37].

(3) Boundary solutions may be lost during the evolution. For
instance, in Fig. 1, boundary solution E is lost once solution
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Fig. 1. An illustration of selecting solutions one by one for a bi-objective
problem. In this example, dots A to I indicate solutions in the current
population. In this example, the convergence indicator of a solution is its
Euclidean distance to the origin, and the distribution indicator is its Euclidean
distances to other solutions. Solutions on the arcs denoted by a dotted line have
the same value in terms of the convergence indicator. rα is a threshold to de-
emphasize neighboring solutions, and the circles denoted by dashed lines are
the niches formed by rα. On the basis of the convergence and the distribution
indicators, solutions A, C, D, F, G, H and I are selected one by one, and B
and E are de-emphasized after A and D are selected, respectively. In addition,
the shaded area indicates the dominant region dominated by solution A.

D is selected.

(4) An effective method for determining the right threshold
still lacks, which is critical for achieving a good distribution
performance. Zhang et al. [20] proposed an adaptive strategy
based on information from the population at the previous
generation. However, information about the shape of the non-
dominated front in the current and previous populations may
be misleading before the shape of the true Pareto optimal front
becomes clear.

To implement the ideas and resolve the issues discussed
above, we propose here a many-objective evolutionary algo-
rithm using a one-by-one selection strategy. In the proposed
method, individuals (candidate solutions) are first sorted ac-
cording to a convergence indicator. In each step, only the
individual having the best convergence performance will be
selected. Then, individuals in the neighborhood of the selected
one or dominated by the selected one are de-emphasized. To
efficiently evaluate the distance between solutions in a high-
dimensional space, a distribution indicator based on the cosine
similarity is employed. In addition, a boundary maintenance
mechanism and a normalization method based on the corner
solutions are introduced to ensure a good coverage of the
Pareto optimal front and to enhance the algorithm’s ability
in solving scaled problems. The detail of 1by1EA will be
presented in Section III.

It is worth noting that the knee point driven environmental
selection proposed in KnEA [20] can also be seen as a one-
by-one selection strategy, however, it is used as a secondary
selection criterion in addition to non-dominated sorting pro-
posed in NSGA-II [11]. In this work we attempt to present a
general framework that utilizes the convergence indicator as
the primary selection criterion.

III. THE PROPOSED METHOD

A. A General Framework

Algorithm 1 A General Framework of 1by1EA
Require: P (population), N (population size)

1: Initialize(P )
2: while the stopping criterion is not met do
3: P ′ = Mating selection(P )
4: P ′′ = Variation(P ′)
5: Q = P

⋃
P ′′

6: Calculate the convergence indicator c (xi) and distribution
indicator d (xi) of each xi ∈ Q, i = 1, ..., N

7: P = One-by-one selection(Q, c, d)
8: end while
9: return P

Algorithm 1 presents the overall framework of the proposed
1by1EA, which is similar to most generational MOEAs.
First, an initial parent population, P , is created by randomly
generating N individuals. Then, mating selection is performed
to choose solutions for creating offspring. This process repeats
until N offspring individuals are generated, which forms the
offspring population, P ′. Merge P and P ′ to form the com-
bined population Q. Next, the convergence and the distribution
indicators of each individual in Q are calculated. Finally,
the one-by-one selection procedure is implemented to select
N individuals from Q to form the population of the next
generation.

In the following, we describe in detail the approaches to
calculating the convergence and the distribution indicators, the
one-by-one selection strategy, and mating selection, which are
three important components in 1by1EA.

B. Calculation of the Convergence and the Distribution Indi-
cators

1) The convergence indicator: In calculating the conver-
gence performance of a solution, each objective is equally
emphasized and aggregated into a scalar indicator. A general
formulation of calculating the convergence indicator can be
summarized as follows:

c (x) = agg(f1 (x) , ..., fM (x)) (2)

There are numerous methods for calculating the conver-
gence indicator. In the following, we discuss four metrics,
among others, that can measure the convergence performance.

The first one is the sum of all the objectives (Sum for short):

c (x) =
∑M

m=1
fm (x) (3)

Sum is one of the simplest and most well-known aggregation
functions to convert multiple objectives into a single one.
Intuitively, it is well suited for problems whose Pareto optimal
fronts are linear. Additionally, it is usually believed to be
unable to solve problems with concave Pareto optimal fronts
[38]. However, previous studies [39] have shown that with an
adaptive weighted strategy, Sum can also work well for these
problems. Another study [40] has shown that it can achieve
better search performance than other aggregation approaches
in many-objective knapsack problems.
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Fig. 2. Contour lines formed by different convergence indicators in the bi-
objective space.

The second one is the Chebyshev distance to the ideal point
(CdI for short):

c (x) = max
1≤m≤M

|fm (x)− z∗m| (4)

where z∗ = (z∗1 , ..., z
∗
M )T is the ideal point, and z∗m =

min
xi∈Q

fm (xi). In contrast to Sum, CdI is believed to be capable

of finding Pareto solutions on concave fronts [38]. Although
CdI is not smooth for continuous objectives, it is able to solve
discrete problems, e.g., scheduling problems [41]. However,
CdI is widely used in the decomposition-based MOEAs for
solving continuous problems [21], [23], [24], since these meth-
ods do not need to compute the derivative of an aggregation
function. In addition, CdI is usually termed as the achievement
function in the preference-based methods to help the decision
maker seek his/her favorite solutions [32].

The third one we consider here is the Euclidean distance to
an ideal point (EdI for short):

c (x) =
√∑M

m=1
(fm (x)− z∗m)

2 (5)

Similar to CdI, EdI is advantageous for solving concave
problems, especially when their Pareto optimal fronts are a
part of hypersphere. It has also been applied in the preference-
based methods [35], [42], where the ideal point is usually
replaced by a reference point given by the decision maker. In
[35], solutions with the smallest values of EdI get the best
crowding distances and are preferred in the selection.

The fourth one is the Euclidean distance to the Nadir point
(EdN for short):

c (x) = 1

/√∑M

m=1
(fm (x)− znadm )

2 (6)

where znad = (znad1 , ..., znadM )T is the nadir point, and znadm =
max
xi∈Q

fm (xi). We employ the reciprocal of the Euclidean

distance to the nadir point, since we intend to minimize the
convergence indicator. EdN is the invert version of EdI. A
recent study [43] has reported that if the distance between the
obtained z∗ and the true ideal point is large, evolving solutions
towards z∗ will guide the population toward a specific region
of the Pareto optimal front. In such cases, evaluating solutions
based on znad may be helpful for approximating the entire
Pareto optimal front. EdN is often used in decision making
[44], [45], where the solution farthest from the nadir point is
the best.

All the above four convergence metrics are computationally
cheap and easy to obtain. The contour lines formed by different

convergence indicators in the bi-objective space are shown in
Fig. 2. Solutions lying on the same contour line have the
same value of the convergence indicator. As we discussed
above, a convergence indicator is advantageous for problems
whose Pareto optimal fronts fit its contour lines. Empirical
studies of these convergence indicators have been conducted
and the results are presented in the supplementary document.
It should be noticed that, different from the preference- and
decomposition-based methods, the main advantage of our
method is that it does not need any weight/reference vector,
which makes it easier to be applied. Since our aim is not
to obtain parts of the Pareto optimal front preferred by the
decision maker, it is unnecessary to weight the objectives.
In the decomposition-based methods, uniformly or adaptively
[22], [25] generating the reference vectors is particularly
important to achieve good distribution performance. However,
in our method, the distribution issue can be resolved by the
niche technique based on a distribution indicator.

2) The distribution indicator: The distribution indicator
is a vector with each of its element indicating the distance
between a solution to the rest in the population. Almost
all existing distribution performance indicators employ the
Euclidean distance to calculate the distance between solutions,
or to estimate the solution density. However, as discussed in
Section II.B, the Euclidean distance is not well suited for
measuring distribution in a high-dimensional space.

The cosine similarity [46] uses the cosine of the angle
between two vectors to measure their similarity. Two vectors
with exactly the same orientation result in a cosine similarity
of 1, and those which are perpendicular with each other
produce a cosine similarity of 0. The cosine similarity is
within the range of [0,1] regardless of the dimensionality of
the vectors. Therefore, the cosine similarity has widely been
used for measuring similarity in a high-dimensional space,
e.g., in data mining [46] and document clustering [47]. For
many-objective evolutionary optimization, we hypothesize that
the cosine similarity will be more effective in distinguishing
two solutions in a high-dimensional space than similarity
measures based on the Euclidean distance. Fig. 3 provides
an illustrative example, where the distribution indicator is the
cosine similarity between a solution and the rest, and cos (θ) is
used as the threshold to de-emphasize neighboring solutions.
Solution A is first selected, and then C is de-emphasized
according to the threshold, cos (θ). Next, solutions B and D
are selected, and E is de-emphasized. Finally, F is selected,
and I, H, G are de-emphasized. Compared to the selection
results illustrated in Fig. 1, in which the Euclidean distance
is employed as the distribution indicator, this example shows
that utilizing the cosine similarity as the distribution indicator
is very helpful in reducing DRSs such as solutions G, H, and
I.

Therefore, the following distribution indicator is adopted in
this study:

d (xi) = (d1 (xi) , ..., d|Q| (xi)), i = 1, ..., |Q| (7)

where
dj (xi) = 1− cos (θij) , j = 1, ..., |Q| (8)
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Fig. 3. An example of selecting solutions one by one for a bi-objective
problem, where the convergence indicator is the Euclidean distance between
a solution and the original point, and the distribution indicator is its cosine
similarity to each of the others. Solutions on a quarter circle with dotted lines
have the same values of the convergence indicator. cos (θ) is the threshold
to de-emphasize neighbors, and the sectors with the dashed lines are the
niches formed by cos (θ). On the basis of the convergence and the distribution
indicators, A, B, D, and F are selected in turn, and C, E, and G-I are de-
emphasized after A , D, and F are chosen, respectively.

is the distance between xi and xj , and

cos (θij) =

∑M
m=1 (fm (xi)− z∗m) · (fm (xj)− z∗m)√∑M

m=1 (fm (xi)− z∗m)2 ·
√∑M

m=1 (fm (xj)− z∗m)2

(9)

It is worth noting that dj (xi) falls in the range of [0, 1],
and the smaller dj (xi), the closer between xi and xj . In
addition, dj (xi) is equal to di (xj), and di (xi) = 0. In the
selection process, after solution xi is selected, each xj ∈ Q
whose distance with solution xi, i.e., dj (xi) is smaller than the
threshold will be de-emphasized. Using the cosine similarity as
the distribution indicator, we can resolve the issue mentioned
in Section II.B.

It is interesting to note that the distribution indicator based
on the cosine similarity has an inherent relationship with the
penalty-based boundary intersection (PBI) in MOEA/D [21]
and the reference point-based diversity maintenance mech-
anism in NSGA-III [19]. Taking Fig. 4 as an example, in
MOEA/D with the PBI function and NSGA-III, the distribu-
tion performance of solution x is measured by its distance
to the reference vector, i.e., d2, which is calculated using the
following expression:

d2 = |x| ·
√
1− cos2θ (10)

It can be conceived that d2 has similar mathematical properties
to the distribution indicator based on the cosine similarity.
However, our method does not need any predefined reference
vectors and is easy to adapt.

C. The One-by-one Selection Strategy

The one-by-one selection strategy is the key component of
1by1EA, and its detailed procedure is described in Algorithms
2, 3, and 4. Based on the convergence and the distribution
indicators, individuals in the combined population, Q, are
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Fig. 4. The distribution performance of solutions in MOEA/D with PBI and
NSGA-III.

Algorithm 2 One-by-one selection(Q, c, d)
Require: N (population size), ζ (distribution threshold to de-

emphasize individuals)
1: P = ∅
2: Qs = ∅ . set of pre-selected individuals
3: Qth = ∅ . set of de-emphasized individuals by ζ
4: Qd = ∅ . set of dominated individuals
5: nrank = 1 . rank used for tournament strategy in mating

selection
6: for m = 1→M do
7: if Q 6= ∅ then
8: Selecting the unique individual(cm(x))
9: De-emphasizing individuals(xunique,ζ)

10: rank(xunique) = nrank
11: end if
12: end for
13: while Q 6= ∅ do
14: Selecting the unique individual(c(x))
15: De-emphasizing individuals(xunique,ζ)
16: rank(xunique) = nrank
17: end while
18: r = |Qs|/N
19: Nd = |Qd|
20: if |Qs| ≥ N then
21: P = {xi |xi ∈ Qs, i ≤ N } . add the first N individuals in

Qs to P
22: else
23: while |Qs| < N do
24: if Q = ∅ then
25: Q = Qth ∪Qd
26: Qth = ∅
27: Qd = ∅
28: nrank = nrank + 1
29: end if
30: Selecting the unique individual(c(x))
31: De-emphasizing individuals(xunique,ζ)
32: rank(xunique) = nrank
33: end while
34: P = Qs
35: end if
36: ζ=update(ζ, r,Nd)
37: return P

Algorithm 3 Selecting the unique individual(fagg(x))
1: xunique = arg min

xi∈Q
fagg (xi)

2: Qs = Qs ∪ {xunique}
3: Q = Q\{xunique}
4: return xunique
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Algorithm 4 De-emphasizing individuals(xunique, ζ)
1: for all xi : di (xunique) < ζ, xi ∈ Q do
2: Qth = Qth ∪ {xi}
3: Q = Q\{xi}
4: end for
5: for all xi : xi � xunique, xi ∈ Q do
6: Qd = Qd ∪ {xi}
7: Q = Q\{xi}
8: end for
9: return Q

classified into the following three subsets: Qs, the pre-selected
individuals (not necessarily be selected), Qth, the individuals
de-emphasized by the distribution threshold, and Qd, the
individuals dominated by the selected ones.

First, a boundary maintenance mechanism is performed to
preserve the corner individuals, referring to Algorithm 2, lines
6-12. In this study, a corner individual shares a similar concept
of the corner solution defined in [48]. If a solution is generated
by simultaneously minimizing kc (kc < M) objectives of an
M -objective problem, it is referred to as a corner solution.
Following the above definition, a corner individual can be
defined to be the individual with the smallest value of a scalar
function aggregated by kc objectives in the current population.
Since kc can take values from 1 to M − 1, there are 2M − 1
possible corner solutions lying on the boundaries of the Pareto
optimal front. Likewise, there exit 2M − 1 possible corner
individuals in a population. As a matter of fact, the number
of corner solutions lying on the Pareto optimal front is often
much fewer. The M corner solutions lying on the objective
axes have a good ability in representing the bound of each
objective on the Pareto optimal front, and can be obtained by
simultaneously minimizing M − 1 objectives. Consequently,
to achieve the homologous corner individuals, we employ M
aggregated scalar functions that can be termed as variations of
the convergence indicator:

cm (x) = agg(f1 (x) , ..., fm−1 (x) , fm+1 (x) ..., fM (x)),
(11)

m = 1, ...,M

For example,

cm (x) =
√∑M

i=1,i6=m
(fi (x)− z∗i )

2
,m = 1, ...,M (12)

Then the corner individual, xconerm , can be obtained as follows,

xconer
m = arg min

xi∈Q
cm (xi) ,m = 1, ...,M (13)

Prioritizing these corner individuals in selection can enhance
the algorithm’s ability in covering the Pareto optimal front as
widely as possible. Moreover, these individuals are definitely
non-dominated individuals [48]. Out of the above reasons, the
corner individuals are first selected and put into Qs.

Next, the rest individuals in Q are chosen to put into Qs
one by one, referring to Algorithm 2, lines 13-17. It should
be noted that once an individual is select into Qs (lines 8 and
14 in Algorithm 2), the individuals either near this solution or
dominated by this solution will be de-emphasized, as shown

in Algorithm 2, lines 9 and 15. As a result, no dominated
individuals are chosen before any other non-dominated ones,
and the problem mentioned in Item (1) in Section II.B can
be solved. These selection and de-emphasizing operators will
repeat until Q becomes empty.

When Q is empty for the first time, if the number of
individuals in Qs is larger than the predefined population size,
N , only the first N individuals in Qs will be selected into P
( refer to Algorithm 2, lines 20-21); otherwise, the individuals
in Qth and Qd will compete to survive until N individuals are
selected into Qs (Algorithm 2, lines 23-33). In this process,
once Q is empty, all individuals in Qth and Qd will be moved
to Q (Algorithm 2, lines 24-29).

Last but not the least, the distribution threshold, ζ, is
updated based on the size of Qs (Algorithm 2, line 36) to
ensure that N solutions are selected. The updating method is
similar to that used in [20]:

ζt = ζt−1e
1
M ( r

R−1) (14)

where ζt−1 and rt−1 = |Qs|/N (Algorithm 2, line 18) are
the distribution threshold and the ratio of the number of pre-
selected individuals to the population size at the (t − 1)-
th generation, respectively. In this study, ζ1 is set to 1.
R ∈ [0, 2] is a threshold to control the number of pre-selected
individuals. Intuitively, when R = 1, the convergence and the
distribution performances can be properly balanced. This will
be empirically verified in the experiments in the supplementary
document. Due to the adaptation in (14), if the number of pre-
selected individuals is smaller than R · N , ζt will decrease,
and vice versa. Thus, the number of pre-selected individuals
remains around R ·N . However, as mentioned in Section II.B,
the true Pareto optimal front is unknown during the evolution,
implying that it might be misleading to adapt ζt based on rt−1

and ζt−1. If the number of dominated individuals in Qd, i.e.
Nd (Algorithm 2, line 19), is larger than (2 − R) · N at the
(t− 1)-th generation, the number of pre-selected individuals
at the (t− 1)-th generation cannot be N , regardless of the
value of ζt−1. In such case, ζt should remain unchanged if
Nd > (2−R) ·N .

D. The Mating Selection Strategy
The one-by-one selection strategy described in the previous

section is adopted in environmental selection. In the mating
selection, a binary tournament selection strategy is proposed
to choose promising individuals to form a mating pool. Two
tournament strategies are employed, i.e., the ranking method
using information from one-by-one selection and the density
estimation based on the distribution indicator.

First, two individuals are randomly selected from the parent
population. If one has a lower rank than the other, the former
is chosen, where the rank, rank (x), can be obtained based
on the result of the one-by-one selection at the previous
generation. Before Q becomes empty, the rank of the solutions
chosen into Qs is set to 1 (Algorithm 2, lines 10 and 16). Once
Q is empty (Algorithm 2, line 24), the rank of the chosen
solutions will be increment by 1 (see Algorithm 2, lines 28 and
32). Note that the rank of each individual at the first generation
is set to 1.
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Next, if these two individuals have the same rank, we prefer
the one with a lower density estimation value, dk (x), which
is formulated as follows:

dk (x) =
1∑k

i=1 d
min
i (x) + 1

(15)

where dmin
i (x) , i = 1, ..., k is one of the k smallest values in{

d1 (x) , ..., d|P | (x)
}

. It can be seen that the density estimation
method is a variant of the k-th nearest neighbor method. The
difference is that we use the cosine similarity to calculate
dj (x) , j = 1, ... |P |, which is the same as in (8), rather than
the Euclidean distance.

Finally, if the density estimation fails to distinguish the two
individuals, one of them will be chosen randomly.

E. Normalization Based on the Corner Solutions

In this study, we further incorporate a normalization proce-
dure into 1by1EA based on the corner solutions to enhance
its ability in solving scaled problems. This version of 1by1EA
using corner solution based normalization is termed 1by1EA-
norm.

Normalization has been demonstrated to be helpful in
solving problems whose objective values are disparately scaled
[19], [20], [23], [30], [36]. In the normalization, the objective,
fm (x) ,m = 1, 2, ...,M , is replaced by

f ′m (x) =
fm (x)− f lbm
fubm − f lbm

(16)

where f lbm and fubm should be the lower and the upper bounds
of the m-th objective on the Pareto optimal front, respectively.
Since the Pareto optimal front is unknown, f lbm and fubm are
usually estimated based on the obtained solution set. f lbm can
be easily set to be the minimal value of fm (x) in the current
population, whereas the estimation of fubm requires information
about the true Pareto optimal front.

In 1by1EA-norm, fubm is estimated based on M corner
individuals. As mentioned in Section III.C, by simultaneously
minimizing M − 1 objectives, a corner solution lying on the
objective axes can be obtained, and the value of the objective
that is not minimized can represent the upper bound of the
objective on the Pareto optimal front. Thus, the homologous
corner individuals are well suited for estimating fubm , and fubm
as follows:

fubm = fm (xconerm ) ,m = 1, ...,M (17)

At each generation in 1by1EA-norm, before calculating the
convergence and the distribution indicators, each individual in
the combined population, Q, will be normalized using (16).
It should be noted that after normalization, the ideal point,
z∗, used for calculating the convergence and the distribution
indicators should be set to (0, ..., 0), whereas the value of each
element of the nadir point, znad, may be larger than 1. Owing
to this normalization procedure, 1by1EA-norm is particularly
capable of solving scaled problems, which will be empirically
shown in the experiments.

IV. EXPERIMENTAL DESIGN

This section describes the experimental design for examin-
ing the performance of 1by1EA. The test problems and the
performance indicators used in the experiments are given at
first. Then, eight state-of-the-art MOEAs to be compared, i.e.,
KnEA [20], BiGE [36], EFR-RR [23], MOEA/D-ACD [24],
MOMBI-II [30], NSGA-III [19], GrEA [27], and SDE [18],
are briefly introduced. Finally, the commonly used parameters
are set for the comparative studies of these algorithms.

A. Test Problems and Performance Indicators

DTLZ [49] and WFG [50], two widely used test suites,
are adopted for empirical comparisons in this study. These
test suites are composed of optimization problems having
linear, concave, multimodal, disconnected, biased, scaled, or
degenerate Pareto optimal fronts. In this paper, we consider
these problems with 3, 6, 8, 10 and 15 objectives. The number
of variables is set to M +4 for DTLZ1, M +19 for DTLZ7,
and M + 9 for the other DTLZ problems. The distance-
and position-ralated parameters are set to 24 and M − 1,
respectively, for the WFG problems. A detailed description
of the DTLZ and WFG suites can be found in [49] and [50].

In order to measure the performance of different algorithms
on these test problems, the inverted generation distance plus
(IGD+) [51] is adopted in this work. IGD+ is a modified
version of IGD [52], which is a widely used performance
indicator. IGD can measure both the convergence and diversity
performance of a solution set obtained by an algorithm, and
the smaller the value of IGD, the better the performance of the
algorithm. However, IGD is a Pareto non-compliant indicator,
thus it may result in inaccurate evaluation in some cases.
In IGD+, the distance between a solution and a reference
point is refined by taking their Pareto dominance relationship
into account, which makes it weakly Pareto compliant and
more accurate on evaluation. Similar to IGD, IGD+ requires
a reference set and the reference points are typically uniformly
distributed on the Pareto optimal front of a test problem. In
this work, we set the number of reference points to around
5,000 and 10,000 when M ∈ {3, 6, 8, 10} and M = 15,
respectively. It should be noticed that when calculating IGD+

for scaled problems, both solutions and reference points will
be normalized based on the true Pareto optimal front.

B. Compared Algorithms

The following eight state-of-the-art MOEAs are chosen
for comparison to assess the performance of the proposed
algorithm: KnEA [20], BiGE [36], EFR-RR [23], MOEA/D-
ACD [24], MOMBI-II [30], NSGA-III [19], GrEA [27], and
SDE [18]. These algorithms cover all the main categories
mentioned in Section I for many-objective optimization. The
code of these algorithms except for NSGA-III are all from the
authors. NSGA-III is implemented by the authors of KnEA.
• KnEA [20] was established under the framework of

NSGA-II [11], and it gives a priority to the knee points
among non-dominated solutions. The process of seeking
local knee points can also be seen as a one-by-one selec-
tion procedure, in which the distance between a solution
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and the hyperplane defined by the extreme solutions is
used as the convergence indicator, and the Chebyshev
distance between solutions is utilized for the distribution
indicator. Hence, KnEA is very relevant to the proposed
algorithm.

• BiGE [36] also simultaneously considers the convergence
and distribution performance of a solution. Different from
1by1EA, BiGE transforms an MaOP into a bi-objective
problem whose objectives are the convergence and distri-
bution indicators. A solution set with well-balanced per-
formance can be achieved by optimizing the bi-objective
optimization problem. However, the niche technique used
in BiGE is based on the Euclidean distance and the niche
size cannot be tuned adaptively.

• EFR-RR [23] is based on the framework of NSGA-II.
However, it is inherently a decomposition-based method
like MOEA/D [21]. EFR-RR considers the distribution
performance of a solution firstly. Only when the perpen-
dicular distance from the solution to the reference vector
is small, its scalarizing function value will be calculated.
This method suggests another idea on balancing con-
vergence and diversity in the high-dimensional objective
space and has also been applied to MOEA/D, termed
MOEA/D-DU. Since EFR-RR performs slightly better
than MOEA/D-DU according to the original study, we
choose the former for comparison.

• MOEA/D-ACD [24] was developed from the original
MOEA/D. The goal of this method is similar to EFR-RR.
However, it achieves this goal by adding constraints to the
scalarizing functions. In this way, the angle between a
solution and the reference point is limited by a threshold,
which guarantees the distribution performance of the
solution. Moreover, this method offers a strategy for
adaptively adjusting the threshold.

• MOMBI-II [30] is an indicator-based algorithm that uses
the R2 indicator to guide the search. The R2 indicator
is an attractive alternative to hypervolume [29], due to
its low computational cost and weak-Pareto compatibility.
MOMBI-II takes two key aspects into account, i.e., using
the scalarizing function and statistical information about
the population’s proximity to the true Pareto optimal
front.

• NSGA-III [19] was adapted from a popular dominance-
based MOEA, NSGA-II, for handling MaOPs. NSGA-
III uses a reference-point-based selection criterion in-
stead of a density-based counterpart (crowding distance)
in NSGA-II. A two-layer strategy was proposed for
generating well-distributed reference points in the high-
dimensional objective space, which can also be used in
MOEA/D.

• GrEA [27] exploits the potential of the grid-based ap-
proach to deal with MaOPs. Grid dominance and grid
difference are introduced to determine the relationship
between individuals in a grid environment. Three grid-
based criteria are incorporated into the fitness of an
individual to distinguish individuals in both mating and
environmental selection processes. Moreover, a fitness
adjustment strategy was developed to avoid partial over-

crowding as well as to guide the search towards various
directions in the archive.

• SDE [18] is a recently proposed method that modifies the
density estimation strategies in traditional Pareto-based
MOEAs. By shifting the position of an individual in a
sparse region, individuals with poor convergence can be
assigned with a high density value, and then discarded
during the selection. In this study, the version that inte-
grates SDE into SPEA2 [12] (denoted as SPEA2+SDE)
is employed due to its better performance compared to
other variants.

C. Parameter Settings

The following parameter settings are adopted by all com-
pared algorithms. Simulated binary crossover and polynomial
mutation are used as the crossover and mutation operators,
with both distribution indexes being set to 20. The crossover
and mutation probabilities are 1.0 and 1/n, respectively, where
n is the number of decision variables. The termination crite-
rion is the predefined maximum number of generations. For
difficult problems, i.e., DTLZ1, DTLZ3, DTLZ6 and WFG1,
the maximum number of generations is set to 1,000 so that
the algorithms are able to converge sufficiently to the true
Pareto optimal front. For the other test problems, the maximum
number of generations is set to 300. To avoid the situation in
which all reference points locate on the boundary of the Pareto
optimal front for problems with a large number of objectives,
the strategy of two-layered reference points is used for EFR-
RR, MOEA/D-ACD, MOMBI-II and NSGA-III. As a result,
the population size of EFR-RR, MOEA/D-ACD and NSGA-III
cannot be arbitrarily specified. For a fair comparison, we set
the population size of the other algorithms under comparison
to the same value as these three algorithms. The setting of
the population size, N , and the parameters for controlling the
number of reference points are listed in Table I.

In 1by1EA, k is set to 0.1N to balance the computational
cost and the accuracy in estimating the density. R is set to 1 to
balance convergence and distribution as discussed in Section
III.C. The Sum method is adopted as the convergence indicator
for DTLZ1 and WFG3, since they have linear Pareto optimal
fronts. The Pareto optimal fronts of DTLZ7, WFG1 and
WFG2 are complex, and can be roughly regarded as different
hyperplanes. As a result, the Sum method is also applied
to these problems. Additionally, EdI is applied to the other
problems of DTLZ and WFG, since all these problems are
concave. As suggested in the original studies, the Chebychev
approach and the PBI approach with θ = 5 are chosen
as the scalarizing method in EFR-RR and MOEA/D-ACD,
respectively. The neighborhood size is set to 0.1N in both
algorithms. Additionally, K is set to 2 in EFR-RR. Since both
the number of objectives and the population size are different
from those of the original KnEA and GrEA, we adjust the
threshold, T , in KnEA and the grid division, div, in GrEA
according to the guidelines provided in the original studies
to achieve the best performances of these algorithms. The
settings of T and div for DTLZ and WFG problems are listed
in Table II.
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TABLE I
SETTING OF THE POPULATION SIZE, WHERE p1 AND p2 ARE PARAMETERS

CONTROLLING THE NUMBER OF REFERENCE POINTS ALONG THE
BOUNDARY OF THE PARETO OPTIMAL FRONT AND INSIDE IT,

RESPECTIVELY.

M p1 p2 N

3 13 0 105
6 4 1 132
8 3 2 156
10 3 2 275
15 2 1 135

TABLE II
THE PARAMETER SETTINGS IN KNEA AND GREA, WHERE THE VALUES

OF BOTH T AND div CORRESPOND TO THE NUMBER OF OBJECTIVES OF A
PROBLEM.

T in KnEA div in GrEA
M 3 6 8 10 15 3 6 8 10 15

DTLZ1 0.5 0.2 0.1 0.1 0.1 11 11 11 13 28
DTLZ2 0.5 0.5 0.5 0.5 0.5 11 8 8 9 10
DTLZ3 0.5 0.2 0.1 0.1 0.1 12 15 15 15 28
DTLZ4 0.5 0.5 0.5 0.5 0.5 11 8 8 9 10
DTLZ5 0.5 0.5 0.3 0.3 0.2 38 16 11 11 12
DTLZ6 0.5 0.4 0.3 0.3 0.2 40 50 50 50 50
DTLZ7 0.5 0.5 0.5 0.4 0.4 10 8 6 4 4
WFG1 0.5 0.5 0.5 0.5 0.5 5 6 8 10 15
WFG2 0.5 0.5 0.5 0.5 0.5 10 9 9 9 17
WFG3 0.5 0.5 0.5 0.5 0.5 18 18 18 24 22
WFG4&9 0.5 0.5 0.3 0.3 0.3 10 11 11 14 12
WFG5-8 0.5 0.5 0.5 0.5 0.5 10 11 11 14 12

Each algorithm is run for 20 times on each optimization
problem, and the mean value of IGD+ are calculated. In addi-
tion, the Wilcoxon’s rank sum test is employed to determine
whether one algorithm has a statistically significant difference
with the other on the performance indicator, and the null
hypothesis is rejected at a significant level of 0.05.

V. RESULTS AND DISCUSSIONS

In this section, the performances of 1by1EA are empirically
evaluated. The experiments are divided into the following two
parts. The first part investigates the achieved Pareto fronts of
1by1EA on 3-objective problems, and the second compares
1by1EA with the other eight state-of-the-art MOEAs.

A. Pareto fronts achieved by 1by1EA on 3-objective DTLZ and
WFG problems

Before comparing the proposed 1by1EA with the other
algorithms on MaOPs, we visualize the Pareto fronts achieved
by 1by1EA on 3-objective DTLZ and WFG problems for
better a understanding of its performance. Since DTLZ7 and
WFG1-9 are scaled problems, 1by1EA-norm was adopted,
whereas the original 1by1EA was adopted on DTLZ1-6. Note
that the population size was set to 100 in this subsection. Fig. 5
shows the 3D plots of the final solution sets of a single run in
the objective space. This particular run is associated with the
result which is the closest to the mean IGD+ value. Note that
in this paper, DTLZA-B refers to DTLZA with B objectives,
and WFGA-B has a similar meaning.
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Fig. 5. Pareto fronts achieved by 1by1EA on 3-objective DTLZ and WFG
problems.

It is evident from Fig. 5 that 1by1EA performs well on
most problems. Although 1by1EA achieves good performance
on some degenerate problems, e.g., DTLZ5 and WFG3, it
struggles to converge on DTLZ6 because of bias in its objec-
tives. For the disconnected problems, e.g., DTLZ7 and WFG1,
1by1EA can obtain all parts of their Pareto front and the
solutions are distributed very well on DTLZ7.

B. Comparison with State-of-the-art Algorithms

In this subsection, 1by1EA and 1by1EA-norm are compared
with KnEA, BiGE, EFR-RR, MOEA/D-ACD, MOMBI-II,
NSGA-III, GrEA, and SDE on DTLZ and WFG with no
less than four objectives. We divide these problems into
the following two groups. The first group is the normalized
problems, i.e., DTLZ1 to 6, and the second is the scaled
problems, i.e., DTLZ7 and WFG1 to 9. Tables III and V
show the ranks of different algorithms in terms of their
mean values of IGD+ on the normalized problems and the
scaled problems, respectively, where the results differently
highlighted according to their ranks. ‘†’ and ‘‡’ indicate that
the result is significantly different from that of 1by1EA and
1by1EA-norm, respectively, and ‘∗’ suggests that the result is
significantly different from both of them. At the bottom of
Tables III and V, the average rank (denoted by Avg.Rk) of
each algorithm are also given, where the significance test are
based on the ranks on each instance. Tables IV and VI list the
summary of the significance tests on IGD+ between 1by1EA
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(1by1EA-norm) and the other algorithms under comparison.
When A vs. B, ‘+’ (‘-’) indicates the number of instances on
which the results of A are significantly better (worse) than
those of B, and ‘=’ means the number of instances where
there exists no statistical significance between the results of
A and B. The detailed values of IGD+ are provided in the
supplementary document.

From Tables III-VI we can draw the following conclusions.
Generally, 1by1EA and 1by1EA-norm perform best on the
normalized and scaled problems, respectively, among the
ten compared algorithms, according to their average ranks.
Although the statistical analysis in terms of the ranks does
not show that 1by1EA (1by1EA-norm) has a significant better
performance than the second and the third best algorithms,
we can see from Table IV (VI) that 1by1EA (1by1EA-norm)
significantly outperforms them on most test instances. Since
the original 1by1EA lacks the normalization procedure, it does
not work as well as 1by1EA-norm on the scaled problems,
demonstrating the effectiveness of the normalization procedure
for scaled problems. By contrast, 1by1EA-norm does not
behave as well as 1by1EA on the normalized problems,
because the normalization procedure may transform the orig-
inal objectives into wrong scales when solving a normalized
problem, especially if the problem has a huge number of local
PFs, e.g., DTLZ1 and DTLZ3. It is interesting to note that
1by1EA (1by1EA-norm) shows a clearly better performance
on DTLZ5 (WFG3). DTLZ5 (WFG3) has M − 1 redundant
objectives, and its Pareto optimal front is a degenerate curve
(line). Previous studies [53] have shown that the corner so-
lutions are effective for dimensionality reduction. In 1by1EA
(1by1EA-norm), solutions are located within the boundaries
formed by the corner solutions, which has the same effect
as dimensionality reduction. That is why 1by1EA (1by1EA-
norm) outperforms the others on DTLZ5 (WFG3). It is worth
mentioning that although DTLZ5 and DTLZ6 have the same
Pareto optimal front, 1by1EA cannot produce satisfactory
results on the latter, since the bias in DTLZ6 objectives results
in wrong corner solutions. This phenomenon can be observed
visually in Fig. 5(f). It is also interesting to compare the
other results on 3-objectives problems in Fig. 5 with those
in Tables III and V, where 1by1EA (1by1EA-norm) achieves
slightly better performance on DTLZ2, 3, 4, 5 and WFG3, 4,
5, 8, 9.

KnEA has an advantage of approximating the Pareto optimal
front by giving preferences to the knee points among non-
dominated solutions. It has a normalization procedure based on
the minimal and the maximal objectives of the current popula-
tion. This normalization procedure makes KnEA competitive
on the scaled problems. However, it also makes KnEA worse
than 1by1EA-norm on DTLZ1 to 6.

BiGE achieves poor IGD+ values on the problems that have
a large range of objectives, e.g., DTLZ1 and DTLZ3. The
main reason is that BiGE uses a niche technique based on
the Euclidean distance, and the niche size is not adjustable.
However, because of its normalization procedure, it works well
on most scaled problems, especially WFG2.

EFR-RR can effectively deal with both the normalized and
the scaled problems except for DTLZ5, DTLZ6 and WFG3.

This attributes to the fact that the reference vectors employed
in EFR-RR are uniformly distributed in the whole objective
space, whereas the Pareto optimal solutions of these problems
are not. Thus, the performance of EFR-RR can be further
improved by integrating a strategy for adaptively generating
the reference vectors [22], [25].

MOEA/D-ACD achieves appealing results on normalized
problems. We notice that the number of non-dominated so-
lutions in the final set is fewer than the population size in
most cases, which makes MOEA/D-ACD less advantageous.
In addition, MOEA/D-ACD performs poorly on all scaled
problems. This does not mean that MOEA/D-ACD is ineffec-
tive for dealing with MaOPs. The main reason is that it lacks
a normalization procedure, which confirms that normalization
is particularly important in solving scaled problems. However,
1by1EA without normalization also significantly performs
better than MOEA/D-ACD on the scaled problems.

Although MOMBI-II has a normalization procedure, it
performs relatively well on most normalized problems. This
can be attributed to its advanced strategy for updating the
nadir point, which reduces the risk of transforming the original
objectives to wrong scales. However, MOMBI-II does not
achieve satisfactory results on the scaled problems except for
WFG1.

NSGA-III shows an overall competitive performance on
both the normalized and scaled problems except for DTLZ5,
DTLZ6 and WFG3 due to the same weakness of EFR-RR.
Moreover, since DTLZ4 has a non-uniform Pareto optimal
front, NSGA-III cannot maintain a good diversity like EFR-
RR.

GrEA achieves encouraging results on most scaled problems
and some low-dimensional normalized problems. By dividing
each dimension of the objective space into the same number
of divisions, GrEA has an inherent ability of normalization.
The main drawback of GrEA is that its performance is very
sensitive to the value of parameter div. In our experiments, we
have tested a number of settings of div for each instance to
make sure that GrEA can obtain a satisfactory performance. If
a method of adaptively adjusting div can be further developed,
the performance of GrEA will be considerably enhanced on
various problems.

SPEA2+SDE works quite well on most normalized prob-
lems, and generally has the medium performance on the
scaled problems among the compared algorithms. However,
it works relatively poorly for the scaled problems with more
than 3 objectives. We speculate that the bias in the objectives
and the high-dimensional objective space make the shifting
procedure less efficient in estimating the density of solutions.
This remains to be examined in future work.

As a whole, 1by1EA and 1by1EA-norm outperform the
compared algorithms on the normalized and scaled problems,
respectively. It is worth noting that the normalization proce-
dure has a great influence on most existing algorithms. Hav-
ing incorporated the normalization procedure, 1by1EA-norm,
KnEA, BiGE, EFR-RR, NSGA-III, and GrEA perform well on
scaled problems, but relatively poorly on normalized problems.
On the other hand, 1by1EA, MOEA/D-ACD and SPEA2+SDE
behave in an opposite way. The normalization procedure
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TABLE III
RANKS OF DIFFERENT ALGORITHMS ON DTLZ1 TO 6 IN TERMS OF MEAN VALUES OF IGD+ .

 

Objective 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15 3 6 8 10 15

DTLZ1 5‡ 2‡ 5‡ 5‡ 4‡ 9† 7† 7† 6† 6† 8* 8* 9* 8* 8* 10* 10* 10* 10* 9* 4 4* 1* 1* 2* 6* 6* 3* 2* 3* 2 5* 6† 7† 7* 1* 3‡ 2* 4* 5* 7* 9* 8* 9* 10* 3‡ 1‡ 4* 3* 1*

DTLZ2 2 4 4 7‡ 6‡ 5 1 3 3† 1† 9* 7* 8* 8* 3* 10* 9* 9* 5 4‡ 4* 8* 6* 4‡ 2* 7* 10* 10* 10* 10* 3* 3 1* 1† 9* 1 2 2† 2† 8* 6† 5‡ 7* 9* 7‡ 8* 6* 5 6‡ 5‡

DTLZ3 3‡ 2‡ 1‡ 3‡ 1 6† 5† 5† 5† 3 7* 7* 8* 8* 10* 9* 10* 10* 10* 8* 5* 9* 4* 1‡ 4* 10* 8* 6* 6* 6* 1* 1‡ 2‡ 4† 5* 2 3* 7* 7* 7* 8* 6* 9* 9* 9* 4* 4‡ 3‡ 2‡ 2

DTLZ4 4‡ 3‡ 3‡ 4‡ 7 7† 9† 9† 7† 5 3‡ 4‡ 6* 5‡ 3* 6* 6† 5† 10* 4* 1* 1* 1* 2* 1* 2* 6 10* 9* 10* 5* 5* 2‡ 1* 2* 9* 10* 7* 3* 8* 10* 2‡ 7* 8† 9* 8* 8* 4‡ 6* 6

DTLZ5 1‡ 1‡ 1‡ 1‡ 1‡ 6† 8† 4† 3† 8† 4* 7† 5* 5* 5† 10† 4* 6* 6* 6* 7* 10* 7* 7* 4* 9* 2 2* 2* 2* 8* 6* 9* 10* 9* 5* 9* 10* 9* 7* 3* 5* 8* 8* 10* 2* 3* 3* 4† 3*

DTLZ6 7 6 4 6 6‡ 8 7 5 5 1† 1* 3* 2* 3* 4* 6* 5 6* 7* 7* 10* 10* 10* 10* 9* 9* 8* 7* 1* 3* 3* 2* 3* 4* 5* 2* 4* 8* 8* 8* 4* 9* 9* 9* 10* 5* 1* 1* 2* 2*

Avg.Rk

MOMBI-II NSGA-III GrEA SPEA2+SDE1by1EA 1by1EA-norm KnEA BiGE EFR-RR MOEA/D-ACD

3.63‡ 5.46† 5.86† 7.56* 4.96† 6.16† 4.36‡ 5.43† 7.63* 3.83‡

TABLE IV
SUMMARY OF THE SIGNIFICANCE TEST OF IGD+ BETWEEN THE

PROPOSED ALGORITHMS AND THE OTHER ALGORITHMS ON DTLZ1 TO 6.

1by1EA vs. 1by1EA-norm vs.
+ - = + - =

1by1EA \ \ \ 3 18 9
1by1EA-norm 18 3 9 \ \ \

KnEA 20 7 3 17 11 2
BiGE 25 2 3 20 5 5

EFR-RR 18 9 3 15 14 1
MOEA/D-ACD 22 6 2 18 10 2

MOMBI-II 15 10 5 8 16 6
NSGA-III 18 8 2 13 12 5

GrEA 26 1 3 22 6 2
SPEA2+SDE 11 8 11 6 20 4

in MOMBI-II is inspiring, but needs further investigation.
Hence, when and how to apply the normalization procedure
is an important issue for future studies in many-objective
optimization. Notwithstanding this, for the normalized prob-
lems, 1by1EA-norm performs consistently better compared
to KnEA, BiGE, MOEA/D-ACD and GrEA. For the scaled
problems, the original 1by1EA performs better than MOEA/D-
ACD. Moreover, unlike KnEA and GrEA, 1by1EA (1by1EA-
norm) is relatively insensitive to its parameters and does not
require the generation of reference vectors as required in EFR-
RR, MOEA/D-ACD, MOMBI-II and NSGA-III. Therefore, we
can conclude that 1by1EA (1by1EA-norm) is very competitive
compared with the state-of-the-art of many-objective evolu-
tionary algorithms.

VI. CONCLUSION

In this paper, we have proposed a novel many-objective
evolutionary algorithm, termed 1by1EA, in which solutions
are selected one by one. In 1by1EA, solutions are selected
according to the convergence and the distribution indicators.
The former measures the distance between a solution and the
Pareto optimal front, while the latter measures its distance to
each other. The environmental selection strategy of 1by1EA
consists of the following two important steps. In the first step,
only one solution with the best value of the convergence
indicator is selected, focusing on the convergence. In the
second step, solutions close to the one selected in the first
step are de-emphasized according to the distribution indicator,
thus maintaining the diversity of the population. By repeating
the above two steps, a solution set with both good convergence
and distribution performances can be obtained.

To demonstrate the effectiveness of 1by1EA, we test its
performance on DTLZ, WFG and Pareto-Box (refer to the
supplementary document) problems in comparison with eight
state-of-the-art algorithms, namely, KnEA, BiGE, EFR-RR,
MOEA/D-ACD, MOMBI-II, NSGA-III, GrEA, and SDE. The
experimental results demonstrate that both 1by1EA and its
variant with normalization are very competitive among the
compared algorithms on most problems studied in this work.

In this study, several methods for calculating the conver-
gence indicators are considered. In the supplementary docu-
ment, we empirically show that a convergence indicator can
improve the performance of 1by1EA when the contour lines
formed by the convergence indicator have a similar shape to
that of the Pareto optimal front of an optimization problem.
However, the shape of the Pareto optimal front of a prac-
tical optimization problem is usually unknown beforehand.
A similar issue of selecting appropriate scalarizing functions
for MOEA/D has been recently reported in [54], which is
solved by adaptively approximating the optimal parameter
value in the scalarizing functions. Therefore, our future work
includes developing a mechanism that can adaptively choose
an appropriate convergence indicator or use an ensemble
of multiple convergence indicators during the evolution of
1by1EA.

In addition, it has been found that the normalization pro-
cedure based on the particular corner solutions can further
enhance 1by1EA’s capability in handling scaled problems.
However, the normalization procedure may also convert an ob-
jective into a inappropriate scale when solving some complex
problems. To increase the precision and the reliability of the
normalization procedure, estimating the bound of an objective
based on statistical information of the corner solutions during
the evolution of 1by1EA would be of great potential.
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Supplementary Materials

I. COMPUTATIONAL COMPLEXITY ANALYSIS OF 1BY1EA

The main difference between 1by1EA and most existing MOEAs lies in the environmental selection strategy, i.e., the
one-by-one selection strategy. In the following, we analyze the computational complexity of the proposed selection strategy.

For the population size of N and an optimization problem with M objectives, the convergence indicator, the distribution
indicator, the Pareto dominance relationship, and the values of aggregated scalar functions for searching the corner individuals
need to be accomplished before the one-by-one selection can be employed. The complexity of the above operators is O (MN),
O
(
MN2

)
, O

(
MN2

)
, and O

(
M2N

)
at each generation, respectively. Next, the complexity of sorting 2N individuals based

on the convergence indicator is O(N2), and that of seeking the corner individuals is O (MN). Given the worst situation,
once an individual is selected, all the rest will be checked whether they are near this solution or dominated by this solution,
which leads to complexity of O

(
N2

)
. Supposing that N is larger than M , the overall complexity of the algorithm will be

O
(
MN2

)
, which is the same to that of most state-of-the-art MOEAs, e.g., NSGA-II [1] and NSGA-III [2]. Therefore, 1by1EA

is computationally efficient.

II. THE BEHAVIOR OF 1BY1EA WITH DIFFERENT CONVERGENCE AND DISTRIBUTION INDICATORS

A. Convergence indicators

As discussed in Section III.B, there are numerous methods for calculating the convergence indicator, and they may have
different behaviors on the same problem. In this part, we choose DTLZ1 and DTLZ2 as the test problems to investigate the
performances of 1by1EA in terms of different convergence indicators. It is known that DTLZ1 has a linear Pareto optimal
front, which is a straight line in the bi-objective space (shown in Fig. 1) or a part of hyperplane in the many-objective space.
The Pareto optimal front of DTLZ2 is quadrant in the bi-objective space (shown in Fig. 1) or a part of hypersphere in the
many-objective space. Since both DTLZ1 and DTZL2 are not scaled, the original 1by1EA without the normalization procedure
is employed to solve them, thus the possible influence of normalization can be minimized. Four representative convergence
indicators suggested in subsection III.B, i.e., Sum, CdI, EdI and EdN, are examined. Note that similar results are also obtained
on the other test problems, which are not going to be presented due to space limit.

Fig. 2 shows the values of IGD+ for the considered convergence indicators on DTLZ1 and DTLZ2 with 4, 6, 8, 10 and 15
objectives. From Fig. 2, we can see that 1by1EA has achieved good IGD+ on both DTLZ1 and DTLZ2 when any convergence
measure is used. Furthermore, these results indicate that Sum is the best convergence indicator for DTLZ1 whilst EdI is the
best for DTLZ2. According to the above results, we can conclude that 1by1EA performs well no matter which convergence
metric is employed. If we have priori knowledge about the shape of the Pareto optimal front of a problem to be solved, we
can adopt an appropriate convergence indicator to further improve the performance of 1by1EA. However, this knowledge is
not assumed here.

f1
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f2

0
DTLZ1 DTLZ2

The
Pareto
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al front

The
Pareto

optim
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Fig. 1. The Pareto optimal fronts of bi-objective DTLZ1 and DTLZ2.
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Fig. 2. IGD+ obtained by 1by1EA using different convergence indicators for DTLZ1 and DTLZ2.

TABLE I
IGD+, ADDITIVE ε AND SP OBTAINED BY 1BY1EA WITH DIFFERENT DISTRIBUTION INDICATORS FOR DTLZ2.

IGD+ additive ε SP

Cs Ed Iε+(Cs,Ed) Iε+(Ed,Cs) Cs Ed
DTLZ2-4 4.589E-02 4.579E-02 1.258E-01 1.203E-01 4.838E-02 4.824E-02
DTLZ2-6 1.201E-01 1.202E-01 2.105E-01 2.158E-01 9.616E-02 1.023E-01
DTLZ2-8 1.701E-01 † 2.272E-01 2.598E-01 † 3.691E-01 1.200E-01 † 1.777E-01
DTLZ2-10 1.960E-01 † 4.395E-01 2.218E-01 † 5.590E-01 1.315E-01 † 3.026E-01
DTLZ2-15 2.970E-01 † 4.629E-01 3.475E-01 † 4.987E-01 2.103E-01 † 3.389E-01

B. Distribution indicators

In this work, we propose to use the cosine similarity to reduce DRSs, thereby promoting the performance of 1by1EA. In
this part, we investigate the effectiveness of the proposed cosine similarity-based distribution indicator (denoted as Cs) by
comparing it with the Euclidean distance-based one (denoted as Ed) on DTLZ2 with 4, 6, 8, 10 and 15 objectives. For the
other test problems, similar results can also be obtained.

Besides IGD+, two other performance indicators, additive ε [3] and spacing (SP) [4] are also adopted to measure the
performance of 1by1EA with different distribution indicators. Here, additive ε compares the convergence performance of two
solution sets, A and B, where Iε+(A,B) < Iε+(B,A) means A is better than B. SP evaluates the uniformity of a solution
set, where SP = 0 indicates that the solutions in the set distribute uniformly.

Table I lists the mean values of IGD+, additive ε and SP in the corresponding brackets, where the better results are highlighted.
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Fig. 3. Profiles of IGD+ over the number of generations using different distribution indicators on DTLZ2.
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Fig. 4. The distributions of Pareto solutions obtained by 1by1EA using different distribution mesaures on 15-objective DTLZ2, shown by the parallel
coordinates.

‘†’ indicates that the result is significantly different from that of Cs and Ed. Fig. 3 presents the profiles of IGD+ over the
number of generations. According to Table I and Fig. 3, we can make the following observations: (1) The cosine similarity-
based method has a similar performance to the Euclidean distance-based method on DTLZ2-4 and DTLZ2-6, and they have
no significant difference. Note that the latter even offers slightly better values on DTLZ2-4; (2) As the number of objectives
increases, the cosine similarity-based method significantly exhibits the better convergence and distribution performances. (3)
The values of IGD+ obtained by using the cosine similarity-based method reduce faster. These results clearly suggest that
the cosine similarity-based method can achieve a superior Pareto set to the other compared similarity measure when solving
MaOPs.

To further illustrate the effectiveness of the cosine similarity-based method, we show the distributions of the Pareto solutions
obtained by different methods on 15-objective DTLZ2 in a single run by the parallel coordinates in Fig. 4. This particular run
is chosen as it produces the results closest to the mean IGD+ value. Note that the objective values of the Pareto optimal front
of DTLZ2 are in the range of [0, 1]. From Fig. 4, we can see that the Pareto solutions obtained by the cosine similarity-based
method distribute almost uniformly on the Pareto optimal front, whereas the Euclidean distance-based method obtains several
DRSs , with each having an objective value much larger than 1. This confirms that the cosine similarity-based method is able
to effectively reduce the number of DRSs.

III. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS ON THE PARETO-BOX TEST PROBLEM

In this part, we further examine the performances of the compared algorithms on the Pareto-Box problem to visually
investigate their performance and the effects of their parameters. The Pareto-Box problem [5], [6] has a Pareto optimal set
located in either one or several two-dimensional closures, and the distribution in its decision space is closely related to the
distribution in its objective space. This means that when testing an algorithm on this problem, we can easily assess the
performance of the algorithm by observing the distribution of solutions in the decision space. In this study, we consider a
10-objective Pareto-Box problem whose Pareto optimal solutions fall inside a decagon in the decision space.

Fig. 5 shows the problem’s Pareto optimal region as well as the final solution set of a typical run of these algorithms with
different settings in the decision space. For 1by1EA, the parameter, R, determines the ratio of the pre-selected solutions to
the population size. Intuitively, when R = 1, 1by1EA can achieve the best performance. To verify this, R is set to 0.6, 1, and
1.4, respectively. Besides, we also investigate 1by1EA-norm and 1by1EA-Ed whose distribution indicator is calculated based
on the Euclidean distance. For KnEA, EFR-RR, MOEA/D-ACD and GrEA, their key parameters, i.e., T , K, θ and div, are
set to different values, which are shown in the corresponding brackets.

According to Fig. 5, we can see that when R = 1, almost all solutions obtained by 1by1EA have converged to and cover
the whole Pareto optimal region. If R < 1 (e.g. 0.6), the solutions can also cover the whole region, but some of them overlaps.
On the contrary, when R > 1 (e.g. 1.4), the obtained solutions cover only a part of the decagon. Therefore, we strongly
recommend to set R to 1 when employing 1by1EA. 1by1EA-norm performs similarly to 1by1EA. Although the solutions
obtained by 1by1EA-Ed are almost uniformly distributed, there exit a number of DRSs outside of the Pareto optimal region,
indicating the relatively poor convergence performance of 1by1EA-Ed. Note that EdI is used as the convergence indicator in
this instance, and the other convergence indicators also obtain similar results.
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Fig. 5. The final solution sets of the compared algorithms in the decision space on the 10-objective Pareto-Box problem.
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TABLE II
IGD+ ACHIEVED BY THE COMPARED ALGORITHMS ON DLTZ1 TO 6.

 

Problem 1by1EA 1by1EA-norm KnEA BiGE EFR-RR MOEA/D-ACD MOMBI-II NSGA-III GrEA SPEA2+SDE

DTLZ1-3 1.526E-2‡ 9.254E-2† 6.067E-2* 1.253E-1* 1.402E-2 1.684E-2* 1.379E-2 1.336E-2* 1.781E-2* 1.393E-2‡

DTLZ1-6 5.590E-2‡ 1.045E-1† 1.535E-1* 3.509E-1* 5.730E-2* 6.160E-2* 5.947E-2* 5.606E-2‡ 1.845E-1* 5.009E-2‡

DTLZ1-8 7.092E-2‡ 1.108E-1† 2.689E-1* 3.763E-1* 5.632E-2* 6.059E-2* 1.071E-1† 5.878E-2* 2.239E-1* 6.119E-2*

DTLZ1-10 7.541E-2‡ 1.051E-1† 2.600E-1* 3.041E-1* 5.626E-2* 5.756E-2* 1.181E-1† 6.475E-2* 2.764E-1* 6.347E-2*

DTLZ1-15 9.053E-2‡ 1.245E-1† 1.898E-1* 5.641E-1* 8.380E-2* 8.538E-2* 1.824E-1* 1.072E-1* 3.433E+0* 8.286E-2*

DTLZ2-3 2.125E-2 2.186E-2 2.932E-2* 3.320E-2* 2.158E-2* 2.292E-2* 2.139E-2* 2.123E-2 2.195E-2† 2.306E-2*

DTLZ2-6 1.201E-1 1.140E-1 1.315E-1* 1.363E-1* 1.349E-1* 1.506E-1* 1.168E-1 1.167E-1 1.209E-1‡ 1.247E-1*

DTLZ2-8 1.701E-1 1.626E-1 1.797E-1* 1.802E-1* 1.738E-1* 2.389E-1* 1.550E-1* 1.621E-1† 1.780E-1* 1.723E-1

DTLZ2-10 1.960E-1‡ 1.882E-1† 2.137E-1* 1.933E-1 1.926E-1‡ 2.745E-1* 1.730E-1† 1.878E-1† 2.377E-1* 1.942E-1‡

DTLZ2-15 2.970E-1‡ 1.245E-1† 2.840E-1* 2.841E-1‡ 2.747E-1* 5.215E-1* 4.253E-1* 3.421E-1* 2.994E-1‡ 2.843E-1‡

DTLZ3-3 2.313E-2‡ 7.892E-2† 7.972E-2* 2.841E-1* 2.481E-2* 1.042E+0* 2.215E-2* 2.304E-2 9.864E-2* 2.398E-2*

DTLZ3-6 1.182E-1‡ 2.064E-1† 6.086E-1* 8.549E+0* 3.064E+0* 1.008E+0* 1.175E-1‡ 1.207E-1* 4.411E-1* 1.257E-1‡

DTLZ3-8 1.664E-1‡ 2.312E-1† 6.267E-1* 1.297E+1* 1.923E-1* 3.882E-1* 1.717E-1‡ 5.238E-1* 1.244E+0* 1.734E-1‡

DTLZ3-10 1.942E-1‡ 2.458E-1† 5.975E-1* 1.405E+1* 1.907E-1‡ 3.399E-1* 2.447E-1† 5.302E-1* 2.532E+0* 1.932E-1‡

DTLZ3-15 2.928E-1 2.983E-1 3.261E+1* 1.642E+1* 5.070E-1* 2.793E+0* 5.812E-1* 4.437E+0* 2.071E+1* 2.962E-1

DTLZ4-3 2.212E-2‡ 3.569E-2† 2.191E-2‡ 3.074E-2* 2.001E-2* 2.013E-2* 2.242E-2* 1.247E-1* 1.378E-1* 5.035E-2*

DTLZ4-6 1.239E-1‡ 1.383E-1† 1.294E-1‡ 1.320E-1† 1.166E-1* 1.320E-1 1.303E-1* 1.400E-1* 1.218E-1‡ 1.327E-1*

DTLZ4-8 1.696E-1‡ 1.830E-1† 1.762E-1* 1.761E-1† 1.529E-1* 2.099E-1* 1.639E-1‡ 1.783E-1* 1.783E-1* 1.736E-1‡

DTLZ4-10 1.912E-1‡ 2.008E-1† 1.921E-1‡ 2.954E-1* 1.706E-1* 2.459E-1* 1.698E-1* 1.786E-1* 2.053E-1† 1.948E-1*

DTLZ4-15 2.889E-1 2.827E-1 2.669E-1* 2.789E-1* 2.623E-1* 3.565E-1* 2.639E-1* 2.931E-1* 2.951E-1* 2.829E-1

DTLZ5-3 4.842E-3‡ 2.452E-2† 6.759E-3* 1.895E-2† 7.297E-2* 1.594E-2* 8.719E-3* 6.891E-3* 6.346E-3* 5.173E-3*

DTLZ5-6 1.093E-2‡ 1.077E-1† 1.068E-1† 6.515E-2* 3.733E-1* 1.104E-2 9.552E-2* 1.743E-1* 7.778E-2* 3.354E-2*

DTLZ5-8 3.717E-3‡ 5.609E-2† 1.067E-1* 1.103E-1* 1.412E-1* 1.477E-2* 1.996E-1* 2.230E-1* 1.864E-1* 4.607E-2*

DTLZ5-10 3.893E-3‡ 5.384E-2† 1.032E-1* 1.297E-1* 1.623E-1* 1.365E-2* 3.374E-1* 3.105E-1* 2.577E-1* 5.819E-2†

DTLZ5-15 1.203E-2‡ 3.110E-1† 1.740E-1† 2.033E-1* 1.024E-1* 5.061E-2* 3.517E-1* 2.174E-1* 5.291E-1* 6.948E-2*

DTLZ6-3 3.463E-1 4.031E-1 6.618E-3* 1.491E-1* 2.856E+0* 6.167E-1* 1.003E-2* 7.963E-3* 1.009E-2* 2.182E-2*

DTLZ6-6 4.092E-1 4.403E-1 1.303E-1* 3.946E-1 3.223E+0* 6.047E-1* 9.239E-2* 2.143E-1* 7.300E-1* 4.835E-2*

DTLZ6-8 4.074E-1 4.257E-1 1.658E-1* 5.211E-1* 2.038E+0* 8.990E-1* 3.261E-1* 9.423E-1* 1.449E+0* 6.888E-2*

DTLZ6-10 4.144E-1 3.880E-1 2.385E-1* 8.204E-1* 1.968E+0* 7.337E-2* 3.476E-1* 8.481E-1* 9.956E-1* 8.452E-2*

DTLZ6-15 4.899E-1‡ 6.106E-2† 2.860E-1* 8.883E-1* 1.169E+0* 1.218E-1* 3.595E-1* 9.021E-1* 3.662E+0* 1.076E-1*

T = 0.3, 0.5, and 0.7 in KnEA have similar meanings with R = 0.6, 1, and 1.4 in 1by1EA, respectively. The behavior of
KnEA with T = 0.5 is similar to that of 1by1EA-Ed, suggesting that hyperboxes used for niching in KnEA have similar effects
as the Euclidean distance-based method used in 1by1EA-Ed. When T = 0.3, the number of DRSs can be reduced to improve
the convergence performance of KnEA. However, more solutions will locate around the center of the decagon. When T = 0.7,
the obtained solutions concentrate in the center. When T = 0.56, KnEA achieves satisfactory results. From this instance and
the others in subsection V.B, we can conclude that T should be properly adjusted in KnEA to obtain the best performance.
On contrast, R can be fixed to 1 in 1by1EA, because DRSs have already been reduced by using the cosine similarity-based
niche technique.

EFR-RR is sensitive to the value of parameter K. A small value of K (e.g. 2) will end up with solutions located in a small
region. Although a large value of K (e.g. 10 or 30) can slightly enhance the distribution performance, more computational
cost is required. Similarly, an appropriate setting of θ (e.g. 0.1) in MOEA/D-ACD is beneficial to the distribution. However,
a large number of solutions fail to converge to the optimal region. The performance of GrEA is also heavily dependent on
parameter div on this problem. If div is too small, e.g. 10, the obtained solutions overlap with each other in their own gird
positions. On the contrary, when div is too large, e.g. 30, GrEA performs comparably with KnEA with T = 0.7.

Overall, SPEA2+SDE performs fairly well, whereas all the solutions obtained by MOMBI-II are located on the center.
Although both BiGE and NSGA-III achieve acceptable results, they struggle to maintain uniformly distributed solutions.

To summarize, 1by1EA, 1by1EA-norm, and SPEA2+SDE are very competitive on the Pareto-Box problem. KnEA and GrEA
can also achieve satisfactory results if their parameters are properly tuned.
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TABLE III
IGD+ ACHIEVED BY THE COMPARED ALGORITHMS ON DLTZ7 AND WFG1 TO 9.

 

Problem 1by1EA 1by1EA-norm KnEA BiGE EFR-RR MOEA/D-ACD MOMBI-II NSGA-III GrEA SPEA2+SDE

DTLZ7-3 1.949E-2‡ 3.381E-2† 1.611E-2† 2.564E-2* 2.649E-2* 4.216E-1* 3.641E-2‡ 2.121E-2* 1.785E-2‡ 1.492E-2*

DTLZ7-6 8.780E-2‡ 8.830E-2† 7.466E-2* 1.080E-1* 1.287E-1* 9.086E-1* 1.042E-1* 1.024E-1* 5.770E-2* 7.987E-2*

DTLZ7-8 1.060E-1‡ 1.493E-1† 1.088E-1‡ 2.233E-1* 1.066E-1‡ 9.290E-1* 2.450E-1* 1.148E-1 1.092E-1‡ 7.527E-2*

DTLZ7-10 1.471E-1‡ 1.734E-1† 1.726E-1† 2.828E-1* 1.168E-1* 1.042E+0* 3.180E-1* 1.634E-1* 1.299E-1* 9.007E-2*

DTLZ7-15 2.126E-1‡ 1.874E-1† 5.062E-1* 2.753E-1* 2.002E-1* 1.296E+0* 2.744E-1* 2.059E-1‡ 4.094E-1* 4.179E-1*

WFG1-3 1.361E-1‡ 1.251E-1† 3.064E-2* 1.856E-1* 4.867E-2* 4.275E-1* 2.259E-2* 4.912E-2* 5.752E-2* 2.446E-2*

WFG1-6 1.028E-1‡ 1.272E-1† 8.207E-2* 2.872E-1* 1.470E-1* 5.956E-1* 5.641E-2* 1.611E-1* 6.047E-2* 6.241E-2*

WFG1-8 7.949E-2‡ 9.376E-2† 8.077E-2 2.448E-1* 1.380E-1* 5.722E-1* 4.020E-2* 2.063E-1* 6.431E-2* 7.479E-2‡

WFG1-10 5.156E-2‡ 5.941E-2† 8.505E-2* 1.821E-1* 6.340E-2* 5.681E-1* 3.259E-2* 2.374E-1* 5.951E-2† 5.151E-2†

WFG1-15 4.998E-2 4.996E-2 4.187E-1* 2.137E-1* 4.209E-2* 6.073E-1* 7.181E-2* 1.848E-1* 1.453E-1* 1.168E-1*

WFG2-3 7.697E-2‡ 3.510E-2† 2.158E-2* 2.642E-2* 5.576E-2* 1.864E-1* 3.938E-2‡ 3.754E-2* 2.713E-2* 1.681E-2*

WFG2-6 8.782E-2‡ 5.921E-2† 3.398E-2* 2.981E-2* 5.385E-2* 1.910E-1* 6.277E-2† 6.423E-2* 3.074E-2* 4.672E-2*

WFG2-8 6.348E-2‡ 4.683E-2† 3.838E-2* 2.491E-2* 4.032E-2* 1.686E-1* 4.896E-2* 6.331E-2‡ 4.333E-2† 4.447E-2†

WFG2-10 4.714E-2‡ 3.913E-2† 4.124E-2* 1.807E-2* 3.395E-2† 1.522E-1* 3.908E-2† 7.717E-2* 3.962E-2† 3.791E-2†

WFG2-15 4.251E-2‡ 3.016E-2† 8.007E-2* 2.984E-2† 4.271E-2‡ 1.723E-1* 2.618E-1* 3.945E-2* 1.034E-1* 4.142E-2‡

WFG3-3 4.274E-2‡ 1.084E-3† 3.101E-2* 2.012E-2* 3.006E-2* 1.274E-1* 1.473E-2* 3.452E-2* 1.731E-2* 1.641E-2*

WFG3-6 2.897E-2‡ 9.098E-4† 8.537E-2* 3.254E-2* 1.397E-1* 2.125E-1* 1.156E-1* 1.427E-1* 2.054E-2* 1.038E-1*

WFG3-8 1.989E-2‡ 7.586E-4† 1.098E-1* 3.806E-2* 5.328E-2* 2.578E-1* 1.515E-1* 9.197E-2* 1.807E-2* 1.138E-1*

WFG3-10 1.056E-2‡ 4.443E-4† 1.161E-1* 3.368E-2* 6.741E-2* 2.737E-1* 1.580E-1* 9.230E-2* 1.087E-2‡ 1.270E-1*

WFG3-15 7.640E-3‡ 9.750E-4† 2.689E-1* 6.523E-2* 1.182E-1* 2.809E-1* 1.822E-1* 1.276E-1* 9.431E-3* 2.520E-1*

WFG4-3 5.870E-2‡ 2.882E-2† 3.753E-2* 3.261E-2* 2.974E-2* 6.843E-2* 3.274E-2* 3.294E-2* 4.632E-2* 2.954E-2*

WFG4-6 2.163E-1‡ 1.262E-1† 1.439E-1* 1.324E-1* 1.309E-1* 2.568E-1* 2.248E-1* 1.321E-1* 1.397E-1* 1.458E-1*

WFG4-8 2.704E-1‡ 1.789E-1† 1.919E-1* 1.784E-1† 1.733E-1† 3.788E-1* 2.106E-1* 1.785E-1† 1.902E-1* 2.018E-1*

WFG4-10 2.969E-1‡ 2.063E-1† 2.050E-1† 1.941E-1* 1.903E-1* 4.267E-1* 2.449E-1* 1.958E-1† 2.389E-1* 2.233E-1*

WFG4-15 3.718E-1‡ 3.340E-1† 2.931E-1* 3.002E-1* 3.013E-1* 4.856E-1* 6.148E-1* 2.742E-1* 3.987E-1* 3.591E-1‡

WFG5-3 6.040E-2‡ 4.063E-2† 4.497E-2* 4.164E-2* 4.689E-2* 1.163E-1* 4.683E-2* 3.936E-2† 4.095E-2† 3.974E-2†

WFG5-6 1.935E-1‡ 1.387E-1† 1.442E-1* 1.427E-1† 1.409E-1* 2.951E-1* 2.009E-1‡ 1.327E-1* 1.383E-1† 1.465E-1*

WFG5-8 2.514E-1‡ 1.856E-1† 1.851E-1† 1.852E-1† 1.796E-1† 3.707E-1* 2.097E-1* 1.736E-1* 1.832E-1† 2.043E-1*

WFG5-10 2.787E-1‡ 2.115E-1† 2.035E-1* 1.987E-1* 1.963E-1* 4.177E-1* 2.279E-1* 1.901E-1* 2.019E-1† 2.258E-1*

WFG5-15 3.548E-1‡ 3.164E-1† 2.705E-1* 2.943E-1* 2.756E-1* 5.363E-1* 7.032E-1* 2.650E-1* 3.982E-1* 4.159E-1*

WFG6-3 9.095E-2‡ 4.434E-2† 4.843E-2† 4.584E-2† 4.681E-2† 1.121E-1‡ 4.341E-1* 4.404E-2* 4.264E-2* 3.863E-2*

WFG6-6 2.306E-1‡ 1.345E-1† 1.521E-1* 1.457E-1* 1.478E-1* 3.396E-1* 2.441E-1* 1.368E-1† 1.424E-1* 1.524E-1*

WFG6-8 2.953E-1‡ 1.879E-1† 1.934E-1* 1.888E-1† 1.836E-1† 4.141E-1* 2.094E-1* 1.776E-1* 1.909E-1* 2.086E-1*

WFG6-10 3.220E-1‡ 2.170E-1† 2.048E-1* 1.999E-1* 2.000E-1* 4.617E-1* 2.280E-1* 1.942E-1* 2.069E-1* 2.300E-1*

WFG6-15 4.374E-1‡ 3.378E-1† 2.829E-1* 2.957E-1* 2.827E-1* 5.520E-1* 5.710E-1* 2.901E-1* 3.627E-1* 3.659E-1*

WFG7-3 7.520E-2‡ 3.119E-2† 3.985E-2* 4.853E-2* 4.124E-2* 1.065E-1‡ 3.049E-2* 2.972E-2† 2.853E-2* 2.489E-2*

WFG7-6 2.295E-1‡ 1.273E-1† 1.370E-1* 1.341E-1* 1.326E-1* 3.095E-1* 2.267E-1‡ 1.283E-1† 1.265E-1 1.378E-1

WFG7-8 2.842E-1‡ 1.830E-1† 1.848E-1† 1.776E-1* 1.689E-1* 3.923E-1* 2.023E-1* 1.706E-1* 1.737E-1* 1.972E-1*

WFG7-10 3.096E-1‡ 2.086E-1† 1.953E-1* 1.920E-1* 1.859E-1* 4.407E-1* 2.215E-1* 1.858E-1* 1.944E-1* 2.182E-1*

WFG7-15 3.647E-1‡ 3.218E-1† 2.858E-1* 2.863E-1* 3.163E-1† 5.156E-1* 5.483E-1* 2.717E-1* 3.603E-1‡ 3.500E-1‡

WFG8-3 9.012E-2‡ 4.631E-2† 5.984E-2* 5.587E-2* 5.124E-2* 1.184E-1* 5.211E-2* 5.159E-2* 4.825E-2† 4.585E-2†

WFG8-6 2.384E-1‡ 1.511E-1† 1.805E-1* 1.723E-1* 1.721E-1* 3.459E-1* 2.811E-1* 1.586E-1† 1.684E-1* 1.724E-1*

WFG8-8 2.889E-1‡ 2.029E-1† 2.235E-1* 2.188E-1* 2.221E-1* 4.305E-1* 2.415E-1* 2.208E-1* 2.264E-1* 2.264E-1*

WFG8-10 3.146E-1‡ 2.317E-1† 2.448E-1* 2.367E-1† 2.544E-1* 4.695E-1* 2.844E-1‡ 2.570E-1* 3.090E-1* 2.548E-1*

WFG8-15 4.040E-1‡ 3.394E-1† 3.494E-1* 3.678E-1* 3.688E-1* 5.351E-1* 6.048E-1* 3.464E-1* 3.955E-1‡ 3.515E-1*

WFG9-3 6.284E-2‡ 2.815E-2† 3.983E-2* 2.984E-2† 4.032E-2* 1.051E-1* 4.709E-2* 4.839E-2* 3.361E-2* 3.995E-2*

WFG9-6 2.084E-1‡ 1.321E-1† 1.430E-1* 1.397E-1† 1.452E-1* 3.183E-1* 2.556E-1* 1.479E-1* 1.403E-1* 1.479E-1*

WFG9-8 2.625E-1‡ 1.837E-1† 1.982E-1* 1.827E-1† 1.820E-1† 4.147E-1* 2.107E-1* 1.902E-1* 1.862E-1† 2.079E-1*

WFG9-10 2.802E-1‡ 2.086E-1† 2.101E-1† 1.963E-1* 1.971E-1† 4.350E-1* 2.276E-1* 2.050E-1† 2.141E-1* 2.260E-1*

WFG9-15 3.677E-1‡ 3.266E-1† 3.014E-1* 3.004E-1* 2.956E-1* 5.412E-1* 7.221E-1* 2.941E-1* 3.772E-1‡ 3.733E-1‡



A MANY-OBJECTIVE EVOLUTIONARY ALGORITHM USING A ONE-BY-ONE SELECTION STRATEGY 7

IV. IGD+ ACHIEVED BY THE COMPARED ALGORITHMS ON DLTZ AND WFG PROBLEMS
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